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Executive Summary

Classification and Discrimination of Sources with Tlme-Varymg
Frequency and Spatial Spectra

ONR, Grant no. NO0014-98-1-0176

Moeness Amin (PI)

This report presents the results of the research performed under ONR grant
number N00014-98-1-0176 over the period of October 1%, 02 to September 30™, 03. The
research team working on this project consists of: Prof. Moeness Amin (PI), Prof. Yimin
Zhang (Research Professor), Dr. Gordon Frazer (Visiting Research Professor from
DSTO, Australia), Mr. Weifeng Mu, Mr. Baha Obeidat, and Mr. Behzad Mohammadi
(Graduate Students). We have also collaborated with Prof. X-G. Xia from University of
Delaware, Prof. H. Ge from NJIT, and Prof. A. Zoubir from Darmstadt University of
Technology, Germany.

The research objectives in FY03 evolved around the detection of complex
Doppler target signatures using time-frequency signal representations. In additions to
achieving these objectives, the research has progressed on two other fronts; namely,
Polarimetric Sensor Array Processing and Subband Array Implementations for Space-
Time Processing. Four book chapters, five journal article, and ten conference papers have
been generated from our research efforts in FY03. Below is the summary of the research
accomplishments in each of the above three areas. Copies of the principle publications
are included in the report.

_1 . Over the Horizon Radar

We have developed a high-resolution time-varying signature estimation of weak target
signals for Over-the-Horizon Radars (OTHRs). A significant problem in OTHR is robust high-
resolution Doppler processing of maneuvering targets. The complex Doppler signatures present in
these cases smear in Doppler and have reduced detectability and localization. We have introduced
a powerful clutter suppression technique combined with high-resolution time-varying signature
estimation method, specifically, in low signal-to-clutter ratio environment. This technique is
based on an integration of autoregressive filtering, adaptive chirp/chirplet transform, and adaptive
bilinear transform. The new technique is most applicable to scenarios where resolution of
multipath returns may clearly reveal accelerating/decelerating characteristics of maneuvering
targets which prove significant for target classifications. In these situations, the Fourier transform
and many existing time-frequency methods often fail.

2. Polarimetric Sensor Array Processing
We have developed polarimetric time-frequency distributions for sensor arrays. A new

technique that encompasses the target time-varying Doppler signature as well as the target
polarization signature for applications to high-resolution imaging and direction finding has been




introduced. Both signatures are estimated and processed by multi-antenna receivers. The signal
polarization information empowers the recently introduced spatial time-frequency distributions,
leading to improved source discrimination and angle-of-arrival estimation. The proposed
technique is a general approach that utilizes diversity and distinctions amongst targets based on
their polarizations, directions, and time-frequency signal representations. Coupling of those three
source characteristics has proven superior to dealing with each one separately. '

3. Subband Array Implementations for Space-Time Processing

Space-time adaptive processing (STAP) systems have been shown to be effective in
suppressing undesired signals in Radar and mobile communication applications. The high
complexity and slow convergence, however, are often the hurdles in practical implementations of
STAP systems. Subband array implementations provide near-optimal steady state performance
with reduced implementation complexity and improved convergence performance. We continued
to analyze the performance of several subband array processing schemes. In particular, we have
evaluated the effect of decimation on the mean square errors and examined the advantages of
performing subband processing on the received input data as well as the desired (reference)

signal.
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High Resolution Time-Frequency
Distributions for Maneuvering Target

Detection in Over-the-Horizon Radars

Yimin Zhang and Moeness G. Amin
Center for Advanced Communications, Villanova University, Villanova, PA 19085, USA
Gordon J. Frazer

ISR Division, DSTO, Edinburgh, Australia

Abstract

A novel high-resolution time-frequency representation method is proposed for source detection and
classification in over-the-horizon radar (OTHR) systems. A data-dependent kernel is applied in the
ambiguity domain to capture the target signal components, which are then resolved using the root-MUSIC
based coherent spectrum estimation. This two-step ‘procedure is particularly effective for analyzing a
multi-component signal with time-varying complex time-Doppler signatures. By using the different time-
Doppler signatures, important target maneuvering information, which is difficult to extract using other
linear and bilinear time-frequency representatibn methods, can be easily revealed using the proposed
method.

This work was supported by the Office of Naval Research under Grant N00014-98-1-0176.




I. Introduction

By exploiting the reflective and refractive nature of high-frequency (HF) radiowave
propagation through the ionosphere, over-the-horizon radars (QTHRS) perform wide-area
surveillance at long range well beyond the limit of the horizon of conventional line-of-sight
(LOS) radars. OTHR systems have become an important tool for wide-area surveillance
(1], 2], 3, 4], [5]-

A significant problem in OTHR is robust high-resolution Doppler processing of accel-
erating or decelerating targets. This arises during aircraft and ship target maneuver and
during observations of rockets during boost phase and mid-course flight. The complex
Doppler signatures present in these cases reveal important information about the target.

Most OTHR systems use classical Doppler processing where one Doppler spectrum
is computed using one full coherent integration time (CIT, typically 1 — 100 seconds
in OTHR). Some systems use overlapped Doppler processing to provide a spectrogram -
analysis of time-varying Doppler. Accelerating/decelerating targets smear in Doppler and
have reduced detectability and localization. The smearing reduces resolution and can
obscure important multi-component Doppler features.

There are numerous time-frequency distributions (TFDs) other than the spectrogram
[6], [7], [8]. Many TFDs provide superior localization in time and Doppler frequency.
Previous applications of time-frequency signal representations to OTHR, however, have
generally been disappointing. The fundamental challenge with OTHR is that the TFD
must retain its desirable resolution and concentration properties in the presence of clutter
that is typically 40dB or more stronger than the target (although possibly localized in a
different region of time-Doppler). ' :

The objective of this paper is to investigate and extend recent developments in data-
dependent TFDs to the problem of robust high-resolution analysis of time-varying OTHR
target returns. Of particular interest is the problem of multi-component target signal de-
tection and identification where important information concerning the maneuvering target
can be revealed. Such information is significant for the classification of maneuvering tar-
gets.

This paper is organized as follows. In Section II, the signal model is introduced and




the Doppler characteristics of the target signal are investigated. Section III provides
the clutter suppression method used in this paper. In Section IV, a high-resolution time-
Doppler processing method is proposed and applied to the underlying OTHR applications.

Section V shows some more computational results.

II. Signal Model
A. Signal Model

Fig. 1(a) illustrates an stylised OTHR system. For simplicity of mathematical analysis,
we adopt the flat ground model, as shown in Fig. 1(b).
The received signal, after pulse or sweep matched filtering and beamforming at the

receiver, is expressed as
y(t) = =(t) + u(t) + n(t), (1)

where u(t) is the clutter, and z(t) is the return signal from the target, expressed as
ﬂ')(t) — fle-—jwc(dt-{-d'r)/c7 (2)

where A is a complex scalar representing the propagation loss and phase, d; and d, are the
respective one-way slant range between the transmitter and the target and between the
target and the receiver, ¢ denotes the speed of light, and w, = 27 f, is the carrier radian
frequency. In (1), n(t) is internal and external noise, whose power is small in a typical
situation with strong target signal-to-noise ratio. Therefore, the noise term is ignored in
this paper.

In a typical OTHR scenario, as shown in Fig. 1(a), in addition to the path directly
reflected from the ionosphere, there is reflection at the ground near the target. Denote
[, and [, as the propagation distance of the two paths, respectively, and d; and d, as the
respective one-way slant range between the transmitter and the target and between the
target and the receiver, respectively. Then, d; takes value of either /; and I; and so does
d,.! The corresponding path losses will be denoted as A; and A,. Therefore, the received

1Some OTHR systems are bistatic in which case the transmitter and receiver are in different locations. In this
case, the range from the target to the transmitter and that from the target to the receiver are different. We have

ignored this difference, however, as it does not significantly affect our results.




signal consists of four combination paths which result in the following three multipath

components:
iL'(t) :Ale—jwc2ll/c+A2e—jw52l2/c+A36—jwc(l1+lz)/c. (3)

We will refer to the path (I : [;) as path I, path (I, : l;) as path II, and the combination
of path (I : I3) and (I, : l;) as path IIL

Based on the flat ground model approximation illustrated in Fig. 1(b), the slant ranges
[; and [y, respectively, can be expressed in terms of the range distance R, the ionosphere

height H, and the aircraft height A, as
L= (R*+ (2H — b)), 1y = (R2+ (2H + h)1)'>. (4)

To clearly reveal the relationship between the slant ranges and the parameters, we take
into account the fact that R > H > h hold for a typical scenario. Then, the above

expressions can be approximated as

2H? — 2Hh 2H? +2Hh

L ~ 2 .
1~ R+ 7 , bR+ 7 | (5)

B. Doppler Characteristics

The flight of an aircraft, in general, consists of horizontal and elevation movements. In
this section, we consider the Doppler frequency characteristics of the aircraft’s movement
in the two different dimension§.

As an aircraft flies, R, and possibly also h, become functions of ¢. The height of
ionosphere, H, is also slowly time-varying. However, we assume that H is a constant over

the processing time interval. From (5), we obtain

dli(t) 2H dls(t) 2H
—— = K(t)vgr(t) — 5=0(t), ——~ S Velt),

L~ K(Oualt) - grgee), S5~ K@ua®) + v, @
where K(t) = (1 — 2H?/R2(t)), vr(t) = dR(t)/dt is the target velocity in the range
direction toward the radar, and v.(t) = dh(t)/dt is the ascending velocity of the target.

The Doppler frequencies of the three different paths are then obtained as

fule) = e 2epeqyy, (t)—%’%i)—vca),
fut) = 2L o 2ok un() + o), )
fur(t) = LB ID o e ey,




From the above discussion, it is evident that, while the dominant Doppler component
2f K (t)vg(t)/c is shared by all the three paths and reveals the target velocity in the
range direction, the small Doppler difference between the paths is a function of h(t) and,
therefore, reveals another important information on how the target moves in the elevation
direction.

In this paper, we consider an often encountered scenario of a maneuvering aircraft as
an example. In this case, the target makes a 180° turn in 7" = 30.72 seconds to change
height and direction. This time interval corresponds to 6 revisits (blocks), and each block
contains 256 samples (slow time samples from the radar). The parameters used in the
analysis and simulations are listed in Table 1. All the multipath signals are considered to
fall within the same range cell.

The range is expressed as

Ruy:Rm)~“%?TanG;) ®8)
and the height is expressed as
mﬂ:hwy+ﬁ%H{1—am(%jy | )

The cross-range movement is not considered because it does not significantly contribute to

Doppler frequency. Substituting (8) and (9) to (5) yields the following Doppler fréquency

f(&) = fr(t) + fu(?), (10)
where fgr(t) is the Doppler frequency caused by the change of R(t) and is expressed as
. 2fc . 2‘Ufc t— tl
Fa(t) = Zeun(t) = =2 cos (“r) (11)

and fi(¢) in (10) is the Doppler frequency caused by the change of height h(¢) and is

expressed, for path I, as

P L (s S

R(t)e T
It is easy to confirm that fj 17(t) = — f1(t) and fh r17(t) = 0 for all ¢.
The time-Doppler signatures are plotted in Fig. 2. The dominant Doppler component

is proportional to the target velocity in the slant range direction, and the small Doppler
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difference between the three paths is proportional to the ascending velocity of the target.
This difference provides important information on how the target moves in the eleva-
tion direction. The maximum one-side Doppler difference corresponding to the maximum
ascending speed 1500 m/min = 25 m/s is about 1.17 Hz.

The frequency resolution in the underlying system is Af = f;/N = 50/256 = 0.195 Hz.
The detection of such a small Doppler difference is possible through the application of dis-
crete Fourier transform (DFT) to the received signal, provided that v(t) and, subsequently,
2f.v(t)/c, are fixed over the CIT of 256 samples. However, when vg is not a constant,
which occurs if the target is accelerating or decelerating, ascending or descending, or,
changing its direction, 2f.v(t)/c becomes time-varying and the conventional DFT-based
approach does not provide high Doppler resolution even with a long CIT [10]. In this case,
the detection and estimation of the Doppler shift caused by a change of A become difficult.
The presence of strong clutter adds more difficulties to the underlying problem.

Conventional methods based on spectrogram and other TFDs smear the target’s Doppler
signature and cannot provide satisfactory resolution performance. The smearing reduces
resolution and is likely to obscure important multi-component time-Doppler signatures. To
realize high-resolution Doppler detection and estimation, we must first proceed with clutter
suppression followed by an effective time-Doppler processing method. The combination of

the two methods clearly reveals the interested time-Doppler signatures.

II1I. Clutter Suppression

We consider TFD methods to achieve high-resolution time-Doppler localization. In the
underlying problem, TFDs are referred to as time-Doppler distributions (TDDs). The
most commonly used TFD is the Wigner-Ville Distribution (WVD). The WVD of signal
y(t) is defined as

Wat, £) = [y(t+7/2)y"(t — 7/2)e7dr (13)
where the superscript “*” denotes complex conjugate. All integrals without limits imply

integration from —oo to +00. Substituting (1) in (13), the WVD of y(t) can be written

in terms of

Wyy(t, ) = Wao(t, f) + Wault, £) + Wau(t, f) + W (t, f), (14)




where the first two terms are, respectively, the autoterms of the target signal and the
clutter, and the other two are their crossterms.

In a typical OTHR receiver, the clutter is much stronger (typically 30 to 50 dB) than
the target signal. Without substantial suppression of the clutter, the TDD autoterm of
the target will be significantly obscured by the clutter autoterm as well as the crossterms
between the clutter and signal.

Clutter often has high correlation to that at its neighboring range cells and cross-range
cells. Based on this property, clutter mitigation methods using received signals from other
range and cross-range cells have been proposed in, for example, [9], [10]. However, in this
paper, the received signal from other range and cross-range cells are not used.

We point to the fact that the clutter is highly localized in low frequencies and can be
well modeled as an autoregressive (AR) process [11], [12]. Therefore, the clutter can be
substantially suppressed by using the AR pre-whitening techniques. Denote P as the order
of the AR model, the AR polynomial parameters a(t),t = 0, ..., P can be estimated via
the modified covariance method [13].

Filtering the received signal y(¢) through a finite impulse filter (FIR), constructed using

the AR polynomial parameters, results in the pre-whitened signal:

z(t) = y(t) * a(t) = z(t) * a(t) + u(t) *x a(t) & z(t) + z.(t), (15)

where “x”

denotes the ponvolution operator.

In this paper, the target signal calculated in Section II is overlaid to real OTHR clutter
data. We assume that A; = A,, and Az = A; + Ay = 2A;. The order of the AR model
should be chosen to maximize the signal-to-clutter ratio (SCR). The order of the AR model
is set to a unit value (P=1). The spectrogram of block 3, which corresponds to the 256
samples from 10.24 to 15.36 seconds, before and after the AR pre-whitening is shown in
Fig. 3. It is seen that, while the clutter is substantially suppressed by more than 40 dB,
the target signal is only partially affected when its Doppler frequency is very close to that
of the clutter. Figs. 4 and 5 show the WVDs of the y(¢) and z(t) before and after the
pre—whiitening. The WVDs are computed from the interpolated data sequence to show the

full Doppler-frequency range. While it is often difficult to identify the target in the WVD

before pre-whitening (Fig. 4), the target signature can now be somewhat identified in Fig.
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5. Further and key improvement in resolutions of the target signature components can be
achieved by using the techniques highlighted in Section 4.
IV. High-Resolution Time-Doppler Processing

Even after substantial clutter suppression, the result in Fig. 5 does not reveal clear time-

Doppler signatures. There are numerous TFDs other than the spectrogram and the WVD

- which provide superior localization. Previous applicationé of time-frequency signal rep-

resentation techniques to the OTHR problem, however, has generally been disappointing
because problem is particularly difficult and demanding.

To achieve chirp signal detection, discrimination, and classification, we propose time-
Doppler estimation based on adaptive kernel and high-resolution time-Doppler localiza-
tion. Bilinear TDDs as well as their Fourier transforms (i.e, ambiguity functions and local

auto-correlation functions) are considered.

A. Time-Doppler Distributions and Adaptive Kernel

In the following, we assume that each component of the return signal from the target
can be approximated as a chirp over the period of one block, i.e.,
3 _
o(t) = 3 Aot that/2) (16)
i=1
is considered for a time period. Such approximation permits us to obtain important signal
information, as discussed in Section II, from the received data signal.

To estimate the chirp rate of the signal, it is common to examine the ambiguity function.

- The ambiguity function of z(¢) is defined as

A,(0,7) = / 2t +7/2)2*(t — 7/2) e dt (17)

t
where 6 and 7 are, respectively, the frequency-lag and time-lag variables. Similar to the
TDD, the ambiguity function can be decomposed into two autoterms and two crossterms.
One important property of the ambiguity function is that all signal autoterms pass through
the origin, whereas the crossterms are often away from the origin. For a multi-component
parallel chirp signal, the ambiguity function shows linear signatures depending on the sig-

nal chirp rate. Therefore, unlike the time-Doppler domain, in which a two-dimensional

8




search is required, the chirp rate in the ambiguity domain can be estimated by a one-
dimensional search. The reducution in computations make the ambiguity-domain attrac-
tive for chirp rate estimation.

The chirp rate can be estimated by searching for the peaks of the following @ function
[14] _
Q&) _ /lAz(T cos&,rsiné)|dr. (18)

In the case considered, peaks possibly appear at £, = —1/tan™!(8,) and &, = —1/tan"}(83,),
where §, and (3, are the chirp rates of the signal and the principle component of the resid-
ual clutter, respectively.

Based on the chirp rate estimation, an adaptive kernel can be designed. We construct
a kernel whose passband only captures the target signal chirp rate. The clutter will be,
subsequently, mitigated in the ambiguity domain due to its distinct orientation compared
to the target signal. For an estimated chirp rate fm, the following adaptive kernel is

constructed to encompass the autoterm ambiguity function of the target signal, i.e.,
$o(0,7) = e~ L EN/ (19)
where o is the kernel width, and
d?(6,7) = 0% + 72 — (Bsiné, + 7 cos ;)2 (20)

The adaptive kernel suppresses the clutter and noise, as well as all crossterms.

The adaptive chirp TDD is
Calty0) = 5= DX A, 1)0ul0, )T (21)
9 7

The above distribution has substantially suppressed clutter and noise, as well as the
crossterm TDDs between the multi-component signal. The adaptive TDD is shown in

Fig. 7 for the received signal at block 3.

B. High Resolution Time-Doppler Localization

In [14], chirp MUSIC was introduced for the estimation of the Doppler frequencies at

each time index ¢. The estimated auto-correlation function R, (t,7) is used to construct a




data matrix for MUSIC spectrum estimation. However, the resulting matrix is, in general,
not positive definite. Therefore, in [14], the filtered ambiguity function is transformed
to the time-frequency domain, and only the positive part of the TFD is considered for
the construction of the auto-correlation function. This method, although showing good
time-Doppler localization in high signal-to-noise ratio (SNR) situations, is computationally
inefficient because spectrum estimation is implemented for each time index. In addition,
the estimated time-Doppler signature is not always consistent with the true values, par-
ticularly in low SNR scenarios. Therefore, it is not a candidate for application in the
underlying OTHR applications.

In this paper, we obtain the auto-correlation directly from the filtered ambiguity function

as

A~

Ro(t,7) = -217; [ Ac(6,7)80(6, )" db. (22)

Because signal components with single chirp rate are involved, the auto-corelation function

R, ;(t,7) of each chirp component has the form
Rx,i(t7 7-) :'Az?ej(aﬁﬂzt)r7 (23)

which is dependent of . Such dependence can be removed by using the estimated value,
B, = —1/ tan(,). From R, ;(t, 7), the time-independent auto-correlation function is esti-

mated as
Ro(r) = [ Bult, m)e 54 dt. (24)

The coherent integration yields coherent MUSIC subspace estimation of «;’s for improved
performance. The vector Rx(’]’) is considered as raw data sequence, rather than as co-
variance elements adopted in [14], to ensure the positive definiteness of the covariance
matrix for spectrum estimation. In our simulations, the root-MUSIC algorithm is used for
computational convenience. Only one root-MUSIC operation is required for each block.
The chirp signatures at different times are then constructed using the estimated chirp rate
and a;’s.

In Fig. 8, the coherent time-varying root-MUSIC spectrum is shown for block 3. Despite
the low SCR, the time-Doppler signatures, along with the Doppler frequency difference

10




information, are estimated clearly and consistently. Simulation results for all other blocks

also confirmed successful Doppler signature estimation.

C. TDD Magnitude Compression and More Simulation Results

The existence of strong time-Doppler. value at some discrete points, however, may some-
time create undesired time-Doppler signatures. Because the desired TDDs typically show
much more consistent signature over all samples with its true chirp rate, we propose the

use of the following magnitude compression of Cy(¢,w),
Co(t,w) = |Co(t, w)|" sign[Ca(t, w)), (25)

where 0 < v < 1. Our experience suggests that v should take value between 0.1 and 0.5.
C'(t,w) is used instead to estimate the auto-correlation function R, (t,7) in (26).
When the TDD magnitude compression is performed, the local auto-correlation function

R.(t,7) should be obtained from
~ 1 ]
R, (t,7) = y > Ci(t,w)e™. (26)

In Fig. 9, the time-Doppler signatures obtained from the proposed method is shown for
the entire turning process of the aircraft. In the computations, the results are calculated
from six blocks, each of 256 samples. v = 0.2 are used for each block. The theoretical
values of the Doppler signatures are overlaid in the plot. It is evident that the proposed
method provides stable and consistent estimation of the Doppler signatures over different
situations.

To show the importance of applying magnitude compression, we plotted in Fig. 10 the
time-Doppler signatures obtained without the magnitude compression. It is seen that,
while most time-Doppler signatures are correctly estimated, one component in block 4 is
not. The reason is simply that, in the process of clutter suppression, signal component

with close spectrum to the clutter may loss part of its signal power.

V. Conclusions

In this paper, a novel method has been proposed for high-resolution time-Doppler sig-
nature localization applied to over-the-horizon radar systems. By combining AR pre-

whitening for effective clutter suppression, time-frequency based signal discrimination,

11




and coherent high-resolution spectrum analysis, the proposed method provides robust es-

timation of time-varying Doppler signature in low signal-to-clutter ratio (SCR) scenarios.

(1]

(2]
(3]

4]

(9]

(6]
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TABLE I

MAJOR PARAMETERS

Parameter Notation Value
initial range R(0) 2000 km
ionosphere height H 350 km
aircraft initial height . h(0) 10000 m
maximum range speed UR 500 km/hr
maximum climbing speed Ve 1500 m/min
carrier frequency fe 20 MHz
waveform repetition frequency fs 50 Hz
samples per block N 256 samples
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Fig. 1. (a) OTHR systems. (b) Flat ground approximation.
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90

70

60

spectrum (dB)
H [4,}
Q (=]

w
(=]

hY)
(=]

— = clutter w/o whitening
4 — - signal w/o whitening
i — clutter w/ whitening {3}
ot —— signal w/ whitening
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Fig. 5. WVD of the received signal 2(t) after AR pre-whitening (block 3).
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Abstract

In over-the-horizon radar (OTHR) systems, the signal-to-clutter ratio (SCR) used for moving
target detection is very low. For slowly moving targets such as ships, the SCR is typically from —
50 dB to —60 dB and their Doppler frequencies are close to that of the clutter. For maneuvering
targets, such as aircrafts and missiles, the Doppler frequencies are time-varying when a long
integration time is considered. When a target does not move uniformly, the Fourier transform
based target detection techniques, including super-resolution spectrum techniques, may fail to
work appropriately. In such situations, the Doppler signatures are time-varying and, therefore,
time-frequency analysis techniques can be used for maneuvering target detection. In addition,
clutter rejection is also required for target detection due to the low SCR. The existing adaptive
clutter rejection algorithms combine clutter rejection with spectrum analysis methods which
usually assume uniformly moving target (i.e., sinusoidal Doppler signature) models. In this paper,
we propose an adaptive clutter reject algorithm together with the adaptive chirplet transform
technique for maneuvering target detection in a multipath environment. Simulation results using
simulated maneuvering target signal with received raw OTHR clutter data show that targets with

SCR below —50 dB can be detected by using the proposed algorithm.
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1. Introduction

Over-the-horizon radar (OTHR) systems have been widely used to detect and track targets, such as
aircrafts and surface ships, in wide-area surveillance at long ranges [1-5]. The existing OTHR detection
and tracking algorithms are based on the assumption that the Doppler frequency of each target is constant
or at least approximately constant during each dwell. Targets are detected from amplitude peaks away
from the zero frequency. The detection capability of an algorithm depends on the SCR and the Doppler
resolution which, in turn, depends on the length of the coherent integration time (CIT). In the existiﬂg
Fourier transform based techniques for maneuvering target detection and tracking, there is a trade-off
between the CIT length, SCR, and the Doppler resolution. For a slowly or uniformly moving target, such
as a ship, the Fourier transform based techniques work well, where a long CIT can be used for clutter
spread reduction. However, for a fast maneuvering target, such as fast boat, aircraft, or missile, in Fourier
transform based techniques, a long CIT can not be used and, therefore, the Doppler resolution is limited.
In such situations, time-frequency analysis becomes an important technique for effective ‘maneuvering
target detection and tracking. Time-frequency analysis methods [6-9] have found wide applications in
radar, [10-15]. Because the radar return signals from maneuvering targets have chirp-like characteristics,
a new Doppler processing method bas;ad on the adaptive chirplet transform (ACT), instead the Fourier
transform, is proposed in this paper. With the adaptive chirplet transform technique, the CIT can be

substantially extended and, therefore, the Doppler resolution can be improved compared with the Fourier

~ transform based techniques.

In an OTHR system, the detection of slow targets is often difﬁcult, due to clutter from the ground
or ocean and the low SCR (typically about —50 dB to —60 dB). Therefore, clutter rejection is necessary to
improve the target detect capability. The available clutter rejection algorithms include Fourier transform
based adaptive clutter rejection method recently proposed by Root [2], and super-resolution spectrum
estimation algorithms, for example, [16,17]. In this paper, an adaptive clutter rejection algorithm is

proposed. After clutter rejection, the ACT is then applied to the clutter-mitigated signal, which makes the
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energy of the maneuvering targets concentrated. By using the proposed algorithm, the maneuvering
targets can be correctly detected even when the SCR is below —50 dB.

This paper is organized as follows. In Section 2, the OTHR signal model is briefly reviewed. In
Section 3, the adaptive chirplet transform for OTHR is introduced. In Section 4, the adaptive clutter
rejection algorithm is proposed. In Section 5, simulation results of maneuvering target detection are

provided.

2. OTHR Signal Model and Problem Description

In this section, we first describe the OTHR signal model and the conventional OTHR processing for

uniformly moving targets, and then the problem of interest in this paper for maneuvering targets.

2.1 OTHR Signal Model for OTHR Processing

After the low pass filtering and sampling, the received signal s(m,n) for a target p with ground

range r is (see for example {4, 5])

[ dy 1]
| @ 2B Tl Ty (n)

s(m,n)=A, exp(jw,mT_)exp,

l
where n, m,T,, @,, dp, f, B, T and ¢, . are the fast time sample index, chirp pulse index, the
minimum delay, Doppler frequency shift, the two-way slant rang, waveform repetition frequency,
bgndwidth of radar, coherent integration time and additive noise, respectively. A, in equation (1) is the
amplitude of the received signal from target (source) or clutter p. The power A12, of the signal has the

P'Gtx o

5 3 xA,, where R;and R, are the distances (meters) of transmitter
4nR,“ 4nR,

expression as [21] A,2, =

and receiver of radar to the target respectively, F,is the power (watts) of antenna with gain G,, o is the
cross section (in square meters) of the target, and A, is the effective area of antenna aperture. From (1),

we find that the signal part ins(m,n) in terms of index z is a complex sinusoidal signal. It is also a-
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sinusoidal function of index m if the Doppler frequency @, does not change with m . In this case, a two-

dimensional discrete Fourier transform over m and n provides the range-Doppler surface S(m',n'). The

received clutter signal is the signal of coming from the ground and surface of sea. Signal of clutter is
spread in frequency, it is not just appear in zero frequency. In the real OTH radar, there are two high peak
correspond to the Bragg lines away from zero frequency which make the target detection more difficult.
For a particular OTHR processing algorithm, the target detection capability depends on the SCR.

Therefore, in order to improve the target detection performance, one can increase the range, Doppler

~ resolution, and/or the SCR. The range resolution, Ar=2—CB— , depends on the bandwidth B of radar.

However, the Doppler resolution, Aa)=-2T£ , depends on the CIT T,, which is chosen at the receiver.
[

Targets and clutter with Doppler difference less than Ao are located in one Doppler cell. One Doppler
cell is divided into k smaller cells and the SCR is then increased by k times if the CIT increases & times.
The assurﬁption here is that the target moves uniformly within the CIT interval. This assﬁmption,

however, may not hold when the CIT is long.

2.2 Problem Description on Maneuvering Target Detection

For a maneuvering target, the signal Doppler frequency @, in (1), due to the target motion or non-
uniform motion of electron densit_y' distribution in ionospheric [17], is no longer constant but time
varying. Consider a moving target with initial velocity v and acceleration a in the direction of slant

range. The Doppler frequency @, in (1) is @,(t) = %i(v +at) . The Doppler spread is Ao, =i§aTc ,

Aw, 24T}

[4

Aw A

and thus, the number of Doppler cells that the target energy spreads over is . Therefore,

when the target moves uniformly, i.e., a = 0, the target energy is always concentrated in a single Doppler

cell. It becomes different, however, when the target moves non-uniformly, i.e., @ # 0. As an example, let
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us assume 2a/A=1. In this case, the target energy spreads over Tf Doppler cells. This implies that, if

the CIT T, increases k times, the number of Doppler cells over which the target energy spreads

increases k*times. Therefore, in this case, the SCR in Doppler reduces k* times compared to that in the
uniform moving target case. This tells us that, for a maneuvering target, the CIT increase does not benefit
the OTHR target detection if the Fourier transform is used in the Doppler processing. We next want to
propose an adaptive chirplet transform (ACT) in the Doppler processing that may take the advantage of

the long CIT no matter whether the target moves uniformly or not.

3. Chirp Signal Detection and Adaptive Chirplet Transform
In OTHR, the received signal corresponding to a range cell is typically a multi-component signal
with timé-varying frequency signatures corresponding to the multiple targets with different velocities and
the clutter. In this section, we first review the Wigner-Ville distribution (WVD) and Radon-Wigner
transform (RWT) for multiple chirp detection. We then describe the adaptive chirplet transform method

which 1s used in the simulation in Section 5.

3.1 Chirp Signal Detection Using Radon-Wigner Transform

WVD of a signal s(¢) is defined as follows [7,8]

W.(1, ) = ?s(t +—§-)s*(t—%)exp(— jor)dz, )
where variables tand @ represent the time and frequency, respectively. WVD has the highest resolution
for a single chirp signal, but its major disadvantage is the presence of artificial cross-terms caused by the
quadratic multiplication nature. For a signal containing multiplé linear chirps, the desired WVD auto-
terms are straight lines in the Wigner plane, while the undesired cross-terms are manifested as the high
frequency oscillating characteristics. To suppress the cross-terms, we consider the Radon-Wigner

transform (RWT) which takes advantage of the above oscillating properties by integrating the WVD

along lines with different chirp rate and frequency shift combinations. A large part of the WVD cross-
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terms is cancelled to each other through the integration, and the residual part of the cross-terms can be
further reduced in the Radon-Wigner plane by noting the fact that the RWT auto- and cross-terms have
different characteristics. Therefore, a proper mask can be applied to the RWT to reduce the cross-terms
with minimum distortion to the auto-terms. The WVD with substantially suppressed cross-terms can be
obtained by transforming the masked RWT back to the Wigner plane [20]. It is proved in [20] that the
WVD auto-terms after the inverse Radon transform of the masked coefficients are the same as those in
the original WVD. These WVD auto-terms are then used to estimate the instantaneous Doppler
frequencies of targets. For other instantaneous Doppler frequency estimation methods, see for example
[61.

For multi-component signals with approximately equal magnitudes, the RWT filtering in the
Radon-Wigner plane is effective. However, when the magnitudes of the signal components are
significantly different, the method may not be effective because the cross-terms between stronger signal
components may be larger than the auto-terms of weaker components. In this case, a weaker signal may
be shaded in the presence of strong cross-terms and can hardly be detected. In OTHR systems, the signal
echo from small targets, such as small boats, are often much weaker than that of the clutter even after the
clutter cancellation. In this case, the method we introduced above can be used to detect the strongest
signal component and then remove it from the original signal. This procedure is repeated until all the

signal components are detected.

3. 2 Adaptive Chirplet Transform for High Order Time-Varying Frequency Signals

For a long CIT, the received signal from a maneuvering target is no longer a linear chirp signal.
When the time-varying frequency is a higher order polynomial of time, the signal can be expressed as a
combination of several linear chirps over different time intervals. Such kind of signal representations,

introduced by Mann and Haykin [15], is called chirplet transform.
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The procedure of chirplet decomposition of a signal is first to estimate the chirp rates &, @,, ...,
ay, of s(r) over different segments, and the respective chirps wu;(?) =exp% j(%o:,-tz)} are then

constructed. For a given frame {hk (t),keZ } and Nj chirp rates, a new chirplet frame {hk Nu;(t).k,ieZ }

is obtained. Based on this chirplet frame {, (t)u,(2)}, s(t) is divided as

Ny
s(2) '—"chi,kGihk(f)“i(t) . 3)

=l k
where C;; =(s(t),h,;(t)u,-(t)) are the frame decomposition and {hk (t), ke Z} is the dual frame of

., keZ }, (e,8) represents the inner product, ¢; are arbitrary weights satisfying

)
ég,-=l, 0<g; <1 @)

For details about (3), see [13]. To have an efficient frame decomposition, {hk t),keZ } should include

functions with different time and frequency bandwidths and center (mean) locations. For example, the

following modulated Gaussian functions

B

> (-1 )I]} &)

Vi ) ( 2
hk(t):(—;—) expi—}’k(t—tk) + j[¢k+

are usually used, where 7, , @, are parameters that control the envelop and phase of the chirplet, and S,
and ¢, denote the frequency and time centers, respectively.

Next, we consider how to construct the chirplet frame. Radon-Wigner transform can be used to

estimate these chirp rates. For a given signal s(f), chirp rate ¢ is obtained by searching the largest peak

in the Radon-Wigner plane after taking the RWT of the signal. We then obtain the chirplet frame
{h, (t)u, ()} by modulating the frame {h, (£)} in (5) with u, () =exp( j%‘—tz). We next estimate which

element in the modified frame {k, (t)u, ()} optimally matches the signal s(¢) and denote this element as

u, (t)hkl (t) where
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- (s(),uy (DB (1))
by, (t)—arg;mnill s(t) - Y u, (D, (1. ©
Define signal s, (t) as
D,u, (Hh, (¢
5 (1) =s(t) - 5@ A ) u (Dhy (1). @)

A (O -

By repeating the same procedure of s(#) to s,(t), we obtain the chirp rate &, corresponding to the

second largest component of s(¢). Let u,(¢) =exp( j%tz) , we obtain

b (50,6, (DR (O, ()R (2)
b () =arg krmnill 5 () — Y e, 8)
and
_ (Sl (t),uz (t)hk2 ®)»
2O=a0-—5 on %0 ©)

Repeating the above procedure, all signal components can be obtained, and signal s(r) can be expressed

as s(r)=)s;(r). Based on the above decomposition, the instantaneous frequencies of all signal

components can be obtained and then used for OTHR target detection.

One can see that the search in (6) and (8) is four-dimensional and thus has a high computational
complexity. In order to reduce the complexity, a sub-optimal adaptive chirplet transform algorithm with
two dimensional search is given in [13] and is summarized as follows:

Step 1. Chirp rate ¢;, and frequency @, are estimated by

(@, ) =arg maxD, (@, @), (10)

(a.0)

where D (a,)is the RWT of s(z).

Step 2. Let g(#) denote a match filter with center frequency @, . Also, denote u, (¢) =exp(j gzltz)a_nd

hy (1) = g(t) o (s(t)u; (1)) (11)




where o is the convolution operator.

Step 3. The coefficient C,, in (3) is obtained as

Cyy = (), by ()u, () = [ s (D] (P)dt . 12)
Step 4. Let
5;(0=Cb (1) uy (1), and y,(5) = s(t) - 5,(2) . (13)
Step 5. Sets=y,(?).
Step 6. Stop if the energy of s(¢) is small enough, otherwise go to Step 1.

Other adaptive chirplet transforms can be found in, for example [9].

4. Clutter Rejection

In OTHR, clutter is a multi-component signal with much stronger power than that of target signal.
To achieve effective target detection, clutter rejection is necessary before ACT is applied. A clutter
rejection algorithm using adaptive Fourier transform was proposed by Root [2]. There are some other
algorithms [17,18], in which adaptive clutter rejection and maximum likelihood target detection are
combined based on the sinusoidal target signal model. In this section, adaptive clutter rejection algorithms
are discussed, which are independent of target detection methods and do not assume any target signal
model. After clutter rejection, time-frequency analysis can be used to make the energy of maneuvering

target focused.

4.1 “Adaptive Noise Canceling” Method Used to Clutter Rejection

To effectively suppress the clutter, we notice the fact that the clutter has high space correlation to'
its neighboring range cells. The correlation coefficient may be as high as 0.8-0.9 [17, 18]. Therefore, the
received signals at neighboring range cells cén be used to estimate the clutter covariance matrix of the
current range cell. The idea of adaptive noise canceller can be uséd to the underlying OTHR clutter

rejection problem. An adaptive noise canceller is a dual-input, closed-loop adaptive feedback system [19],




which makes use of the signal d(n) received at the primary sensor and the signal v,(n) received at a
reference sensor. The signal received d(n)at th¢ primary sensor is composed of the interested signal
s(n) and additive noise vy(n), i.e.,

d(n) =s(n) +vy(n) (14)
It is assumed that the signal s(n) and noise v,(n) are uncorrelated to each other, and v,(n) is correlated
to the noise vy(n) but is uncorrelated to the signal s(n). The reference signal v,(n) is useci to estimated

the noise component in d(n),
K-
y(n) =Y w, (n)v;(n—k) 15)
k=0 .

where w, (n) vare the adjustable tap weights of the adaptive ﬁvlter. The filter output y(n) is subtracted
from the primary signal d(n), resulting in the following error signal

e(n) =d(n)— y(n) = s(n) +v,(n) — y(n). (16)
The error signal is used to adjust the tap weights of the adaptive filter. The error signal e(n) is the overall
system output, which contains the desired signal s(n) with the noise suppressed.

In the OTHR target detection, the desired signal is. the echo from targets, whereas the undesired
signal is clutter and noise. As the OTHR signal is usually processed after beamforming, a reference
sensor receiving only the clutter is not available. However, as we mentioned before, the clutter in one
range cell has high correlation with that of its neighboring range cells whereas the target signals do not.
Therefore, the signals received at neighboring range cells can be used for clutter suppression, resemble to

the signal received at the reference sensor in an adaptive noise canceller.

4.2 Adaptive Clutter Rejection Algorithm

In this subsection, an adaptive signal subspace method is used to clutter rejection. Let s.(f) be the

received signal after range compression in the current interested range cell, Sp, (0)s..,5,, () are received
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signals after range compression from N neighboring range cells. Define the following signal vectors

S.and S, constructed for the current and the ith neighboring range cells from the all M samples over the
CIT,

S, =[5, (05, (D5, (M ~ Dr”. an
S; =Ls, (0,5, (D, s, (M - : (18)

Then, the covariance matrix of clutter and external noise can be estimated by

. ilnilySiSiH
R=‘—:1—N—————, 19
P A

i=l

where

sis.
T e (20)
s Als

is the correlation coefficient between the received signal vectors at the current range cell and the ith
neighboring cell, and vy is a positive scalar, typically takes value between 1 and 2.
'y

The introduction of term ln,- in (19) allows weighting differently the contributions of the

neighboring range cells depending on their respective correlation coefficients with the current range cell.
By doing this, the contributions from less correlated range cells can be effectively eliminated.
The SVD of R can be written as

R=UVU", @n
where U is a unitary matrix and V is a diagonal matrix. Columns of U are eigenvectors of R, and the
elements in the diagor;al of V are the corresponding eigenvalues. As the clutter is the dominant
component in the received signal, the eigenvectors u,,uz,...,uM' corresponding to the M largest
eigenvalues can be reasonably associated to th¢ clutter. The projection of the received signal to the

orthogonal subspace of the clutter,
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M
Spry = =21, u, S, , , (22)

i=1
results in clutter-suppressed signal.
In (17), because the number of neighboring range cells is usually smaller than the dimension of the
variance matrix R to be estimated, it is rank deficient. By considering the existence of thermal noise, the

full-rank covariance matrix R, of clutter and noise can be estimated as
R, =R+0%I, (23)
where o2is the noise variance which can be roughly estimated, and / is the identity matrix. Performing

singular value decomposition (SVD) of R, yields

AP, (24)

(A

Mz

R =UVUY =% A"

i=1

]
—

where 4 is the i-th largest eigenvalue of R,, @i, is its eigen vector, and P, =i,

is the projection
operator to the subspace generated by &, . From (21), we know that more clutter energy distributed in the

subspace vector #; corresponding to a larger eigenvalue 4;. The following algorithm provides an

efficient way to remove strong clutter without any knowledge of signal,
S proj Z f(A)PS,, (25)

where f(4) is a>weighting function that takes a smaller value for a larger value of A, . In this paper,

f(A4;) is chosen as

f(/i.-)=%_- (26)

Therefore, the signal vector, after the adaptive clutter rejection, becomes

S proj Zf(l)PS -i%ﬂsc RS, =(R+0’D7'S,. 27)

The noise variance estimate ¢ controls the rejection level against the clutter components.




5. Simulation Results

‘In this section, the performance of the proposed algorithms for maneuvering target detection is
shown by some simulation results. The signal data coming from maneuvering targets is generated based
on the signal model (1) and then added to the raw OTHR clutter data. The radar working frequency is

20MHz. There are 54 range cells in the data. The coherent integration time (CIT) is 7, = 12.3 seconds.

The velocity and acceleration of targets in the range direction are from 40m/s and 3 m/ s? respectively.
The signal to clutter ratio is about —53.5 dB.

In our simulations, the following steps are implemented. For the received signal, matched filtering
and range compression are first implemented in the range direction. Then, the signal subspac'e clutter
rejection algorithm is applied to remove the clutter where y=1 is used. At last ACT is used to the clutter-
rejected signal for target detection.

The signal waveforms before and after adaptive signal subspace clutter rejection to the range cell.
that contains target are shown in Figl.(a). We can see that the clutter energy is removed about 15 dB by
using the signal subspace algorithm. The results can also be verified by the results of Fig.1(b) and
Fig.1(c), which are the mesh of range-Doppler results to the data before and after clutter rejection by
adaptive subspace clutter rejection algorithm. It is noted that the clutter suppression at edge range cells is
not as effect.ive as the other cells because less neighboring range cells are available for clutter subspace
estimation.

" The processing results with different methods are shown in Fig.2. The target can not be detected
from the range-Doppler results obtained by using the Fourier transform to the pre-clutter rejection data, -
which is shown in Fig2.(a). Because the Fourier transform spreads the target energy of the maneuvering
targets, as shown in Fig. 2(b), the target is still undetectable even after the clutter rejection and SCR
enhancement. Instead of the Fourier transform in Fig.2(b), ACT is used in Fig.2(c). The target, however,
can be easily detected now in Fig.2(c) at range 2250 km with Doppler about 4 Hz. The amplitudes of the

signal in the range cell containing the target are shown in Figs.3(a)-(c) for the Fourier transform without
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clutter rejection, the Fourier transform with clutter rejection, and the ACT with clutter rejection,
respectively. From Fig.3(a), we can see that the clutter amplitude bf the main lobe around O Hz is about
20 dB higher than that of the side lobes including the region around —5 Hz where the target is located. In
Fig.3(b), although the clutter amplitude of the main lébe is reduced by about 15 dB and the side lode is
reduced about 5 to 10 dB, the target still can not be detected. But in Fig.3(c), the target energy is focused.
The amplitude of the target signal is about 4 dB higher than that of the clutter in target’s neighboring

frequency bands.

6. Conclusion

In this paper, an adaptive clutter rejection algorithm was proposed to maneuvering target detection
in OTHR systems.bThis algorithm can reciuce clutter energy by about 15 to 20 dB with negligible
distortion to the waveform of the signal returned from maneuvering targets. An adaptive chirplet
transform algorithm was applied to the clutter-mitigated signal for improved Doppler processing.
Simulation results showed that the proposed method substantially enhances the target detection ability.
Particularly, several simulation examples showed that the proposed method can successfully detect weak
target signals where other methods can not be used directly with adaptive chirplet transform for

maneuvering target detection.
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Signal Wave Forms Before and After Projection
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Fig. 1. Signal amplitude before and after clutter rejection.
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Fig. 2. OTHR results with different processing methods
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Fig. 3. The processing results with different method to the range containing targets
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Abstract

Bilinear synthesis of nonstationary signals impinging on a multi-antenna receiver has been recently
introduced. The distinction in the spatial signatures of the sources provides a vehicle to reduce noise
and source signal interactions in the time-frequency domain, and hence improves signal synthesis. In
this letter, we utilize another form of diversity for enhanced source time-frequency signal representations.
It is shown that cross-polarization antennas can be used to mitigate crossterms via simple polarization

averaging.
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I. Introduction

Time-frequency distributions (TFDs) have been found useful in the analysis and classi-
fication of nonstationary signals [1], [2]. In [3], it is shown that the array manifold can be
used to improve syntheses of signals with rapid time-varying frequency characteristics. In
essence, averaging TFDs across different array sensors trades off the spatial dimension for
enhanced auto-source TFDs. Spatial averaging mitigates the cross-source time-frequency
(t-f) terms as well as reduces the noise contribution. _

When the receiver is not equipped with an antenna array, or the array is of small aper-
ture, the spatial averaging of TFDs proposed in 3] will no longer be effective or a.bpiicable.
A possible alternative is to use cross-polarization antennas where the polarization dimen—
sion can be utilized to enhance t-f signature estimation and subsequently leads to improved
signal synthesis performance. The polarizatioh—based t-f signal synthesis can be used for a
single as well as multiple antennas. In this letter, we restrict our discussion to the simple
case of a single pair of cross-polarization antennas. The géneralization to applications of
multi-sensor receivers is straightforward and is addressed in [4].

Signal polarization properties have been commonly utilized in wireless communications
and synthetic aperture radars (SARs) [5], [6]. Distinct polarization signatures of differ- -
ent sources can be‘ observed when the sources have different transmitter polarizations or
distinct channel characteristics.

This letter is organized as follows. The signal model is presented in Section II. Section
IIT proposes the polarization averaging for t-f signal synthesis. The analogy between the
proposed method and the array averaging is also considered. Numerical simulations are

given in Section IV.

II. Signal Model

The discrete-time data received at a cross-polarization antenna, which receives two
orthogonal polarizations (e.g., vertical and horizontal polarizations), is expressed in the

following vector format
x(t) = [oP(8) 29(5)]", 0

where [P and [9 represent the two orthogonal polarizations, and T denotes transpose.
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The following expression

Dy, f) = / / &t — u, 7)z0(t + - 2alt - ;))*e_jz”ftdudT )

—00 —00

defines the auto- (i = k) and cross-polarized (i # k) TFDs of the two polarizations,
where ¢ and f are the time and the frequency indeces, respectively, and ¢(t,7) is the
time-frequency kernel [7]. Each of 7 and k takes either value of the polarization index p
or q. The auto- and cross-polarized TFDs can be combined to form the following 2 x 2
polarization TFD matrix,

Dt f) = / / &t — u, 7)x(t + ) H(t )e 32 ft oy (3)

~00 —00
where superscript # denotes transpose conjugation. The diagonal entries of Dy (¢, f) are
the auto-polarized TFDs, whereas the off-diagonal elements are cross-polarized TFDs.
Assume L source signals s;(t),! = 1,..., L, are incident on the antenna. The received
data for each polarization is the linear combination of the same polarization componehts

of the source signals and noise. That is,

L ; R
gty =3 allsi(t) + nll(t), i=p,q, (4)

where a?] represents the mixing coefficient of the Ith source along the ith polarization,
and nll(t) is the noise component at the same polarization. In the vector form, x(t) can

be decomposed into the following terms
L
x(t) =y(t) + n(t) = As(t) + n(t) = Y_as(t) + n(t), (5)

where a; = [a” 9|7, A = [ay, ..., a1), s(t) = [s1(2), - .., s.(t)]%, and n(t) = [nP(¢) nlA ()]
Because of the ambiguity with respect to the signal strength and the propagation atten-
uation, it is convenient to assume that [|a;||2 = 2, ! =1,---,L, and the propagation
attenuation scalar is absorbed in s;(t). The noise elements are modelled as stationary and
white complex Gaussian processes with zero mean and variance o2 in each polarzation,

ie.,
E [n(t +7)n ()] = 0%(7)L, (6)
where §(7) is the Kronecker delta and Iy denotes the N x N identity matrix.
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II1. Polarization Averaging

It is clear from Section II that the signal model of the cross-polarization antenna case is
similar to that of a two-antenna array. The only difference is that the source polarization
vector a; is used in place of the source spatial signature, or steering vector. Accordingly,
polarization averaging can be equally effective as spatial averaging in mitigating the TFD
crossterms. ‘

From eqns. (2) and (4), the auto-polarization TFD of z!l(t) is given by

Dt f) = Z; Z afl(a¥)* Dy, (¢, F) + Dyiirata(t, £ ), i=p,q, (7)
, g
where Dy, (t, f) represents the auto-source TFD (if [ = m) or the cross-source TFD (if
1 # m). The presence of cross-source terms often obscures the true power localization over
time and frequency.

Averaging the auto-polarization TFDs over the two polarization branches yields
g

W, f) = %Z:Dﬂﬂmm(t, f)

= Z( Zay all) ) Dy, (8, f) + = Z D, i1 (t, f)]

z-:l]:l 1=p 7"‘1)
= 3% (33a) Daer 6.9 + 5 _z nin 8 )] Q

In eqn. (8), afla, is the inner product of the polarization signatures a,, and a;. Define the
polarization correlation coefficient

1

.:Blm = Eaﬁ{al’ (9)

Accordingly, eqn. (8) can be expressed as

W(t7 f) Z Z :Blm S[Sm (t f) + Z n[”’]n[‘] (t f (10)
i=1j=1
The above equation shows that W(¢, f) is a linear combination of the auto- and cross-

polarization TFDs of all signal arrivals. It is straightforward to show that for the {th and

the mth sources,
|Bm| <1, ifl#m and Bm=1, ifl=m, (11)
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indicating that the constant coefficients in (10) for the auto-polarization TFDs are always

greater than, or at least equal to, those for the cross-polarization TFDs. For sources with

~ distinct polarizations, |B;,| < 1, leading to significant suppression of crossterms, and

thereby enhancing the signal signature estimation.

An interesting case arises when two signals have orthogonal polarization signatures, i.e.,
Bim = 0 for I # m. In this case, the crossterms between these two source signals will be
entirely eliminated and only the autoterms will be maintained.

The t-f kernel in eqns. (2) and (3), which introduces temporal averaging of the local
autocorrelation functions at consecutive time samples, can be selected to reduce the TFD
noise effect for the single antenna case, as discussed in [8], [9]. However, even without
kernel srﬁoothing, the polarization averaging in eqn. (10), similar to spatial averaging
[10], decreases the noise variance and its interaction with the signal components beyond
that achieved in a single antenna (polarization) case. Once the polarization averaging
is performed and the t-f signature is identified, we can then proceed with the bilinear
syntheses using the methods described in [2].

It is noted that, although the model used allows for L source signals to be present, there
are only two dimensions of polarization diversity for a single cross-polarization antenna.
Therefore, when L > 2, while the crossterms between different source signals can still be
substantially mitigated, it becomes impossible to completely eliminate all the crossterms'

unless more sensors are used.

IV. Simulation Results

In this section, we provide computer simulations to demonstrate the improvement gained
by the proposed technique in the reduction or elimination of crossterms and signal syn-
thesis. Two high-order frequency modulated signals are considered on a dual-polarization

dipole. Their polarizations are assumed to be orthogonal, with the following mixing ma-

ol

The length of the signal sequence is set to N = 256. The additive noise is zero mean,

trix:

Gaussian distributed, and white. The input signal-to-noise ratio (SNR) is 3 dB.
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With the presence of high-level noise and close t-f signatures, it is very difficult to
identify these t-f signatures when only a single-polarization sensor is used. Fig. 1 shows
the extended discrete-time Wigner-Ville distribution (EDTWVD) [11] of the data received
at the vertically polarized antenna. However, as evident from Fig. 2, the t-f signatures
of the two signals can be revealed when polarization averaging is applied. Fig. 2 shows
that the crossterm between the two signals are completely eliminated and the variance of
noise terms is reduced. Masking the first signal and applying standard signal synthesis
techniques yield a high quality signal recovery. Flg 3 shows the TFD of the synthesized

signal waveform of the first signal.

TFD at a sensor
o T
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Fig. 1. EDTWVD computed from the signal received at the vertical polarization

antenna.
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Fig. 2. EDTWVD averaged over two polarizations.
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Fig. 3. EDTWVD of the synthesized waveform of the first signal.

V. Conclusion

Polarization averaging allows effective crossterm reduction and autoterm enhancement,
aiding source time-frequency signature estimations and waveform recovery. Averaging
TFDs across polarizations can be performed concurrently with TFD averaging across the
array, thereby utilizing both spatial and polarization diversity in syntheses of nonstationary
signals. However, polarization averaging can be applied alone if the difference in the source
spatial signatures is insufficient for crossterm reduction, or the receiver is not equipped

with antenna arrays.
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Abstract

This chapter presents a comprehensive treatment of the hybrid area of time-frequency distribution
(TFD) and array signal processing. The application of quadratic time-frequency distributions to sensor
signal processing has recently become of interest, and it was necessitated by the need to address important
problems related to processing nonstationary signals incident on multi-antenna receivers. Over the past
few years, major contributions have been made to improve direction finding and blind source separation
using time-frequency signatures. This improvement has cast quadratic time-frequency distributions as
a key tool for source localization and signal recovery, and put bilinear transforms at equal footing with
second-order and higher-order statistics as bases for effective spatial-temporal signal processing. This
chapter discusses the advances made through time-frequency analysis in direction-of-arrival estimation,

signal synthesis, and near-field source characterization.
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I. Introduction

Time-frequency distributions (TFDs) are used in various applications, including speech,
biomedicine, sonar, radar, GPS, and geophysics. Over the past two decades, most of the
work on quadratic TFDs has focused on the mono-component and multi-component tem-
poral signal structures and the corresponding time-frequency (t-f) signatures. This work
has led to major advances in nonstationary signal analysis and processing. Information
on the signal instantaneous frequency and instantaneous bandwidth obtained from the t-f
domain has allowed improved separation, suppression, classification, identification, and
detection of signals with time varying spectra [1], [2], [3], [4], [5], [6]-

Applications of the quadratic distributions to array signal processing began to flourish
in the mid-nineties. The main objective was to enhance direction-finding and blind source
separation of nonstationary signals using their t-f signatures. Another important but
different objective was to characterize near-field and far-field emitters based on their spatial
signatures. In order to achieve both objectives, new definitions and generalization of
quadratic distributions were in order.

The spatial time-frequency distribution (STEFD) has been introduced to describe the
mixing of nonstatioanry signals at the different sensors of the array. The relationship
between the TFDs of the sensors to the TFDs of the individual source waveforms is defined
by the steering, or the array, matrix, and was found to be similar to that encountefed in
the traditional data covariance matrix approach to array processing. This similarify has
allowed a rapid progress in nonstationary array processing from the TFD perspective [7].

This chapter discusses two fundamental formulations to incorporate the spatial informa-
tion into quadratic distributions. One formulation is based on STFDs and the localization
of the signal arrivals in the t-f domain. The corresponding analysis, theory, and applica-
tions are covered in the first six sections of this Chapter. Section VII deals with another
formulation, in which the quadratic distribution of the spatial signal across the array is
computed. This sensor-angle distribution (SAD) localizes the source angle at each sensor,
and is the dual in sensor number and angle to Cohen’s class of time-frequency distributions.
The SAD is particularly appropriate for characterizing sources and scatter in the near-field

of an array. Sources arriving from the far-field have the same angle at each sensor. In con-
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trast, sources in the near-field have differing angle at each sensor, and a full sensor-angle
distribution provides a complete characterization of the near-field source and scatter en-
vironment. Knowledge of this characterization can be important when calibrating arrays
of sensors placed in a non-homogeneous environment, such as a radar or communications
array deployed in a built-up environment and surrounded by other metallic structures that

are not part of the array.

II. Spatial Timé—Frequency Distributions
A. Signal Model

In narrowband array processing, when n signals arrive at an m-element (sensor) array,

the linear data model
x(t) = y(t) + n(t) = Ad(t) + n(t) | (1)

is commonly assumed, where the m x n spatial matrix A = [a;, ---, a,] represents the
mixing matrix or the steering matrix. In direction finding problems, we require A to have
a known structure, and each column of A corresponds to a single arrival and carries a
clear bearing. For blind source separation problems, A is a mixture of several steering
vectors, due to multipaths, and its columns may assume any structure.

The mixture of the signals at each sensor renders the elements of the m x 1 data vector
x(t) to be multicomponent signals, whereas each source signal d;(t) of the n x 1 signal
vector d(¢) is typically a monocomponent signal. n(t) is an additive noise vector whose
elements are modeled as stationary, spatially and temporally white, zero-mean complex

Gaussian random processes, independent of the source signals. That is,
E[n(t +)nf(t)] = 66(7)I and E[n(t + 7)n”(¢)] =0 for any T (2)

where 6(7) is the delta function, I denotes the identity matrix, o is the noise power at
each sensor, superscript 7 and T, respectively, denote conjugate transpose and transpose,
and E(-) is the statistical expectation operator.

B. Spatial Time-Frequency Distributions

We first review the definition and basic properties of the spatial time-frequency distribu-

tions (STFDs). STFDs based on Cohen’s class of time-frequency distribution (TFD) were
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introduced in [8] and their applications to direction finding and blind source separation
have been discussed in [9], [10] and [8], [11], respectively.
The discrete form of TFD of a signal z(t) is given by
D.(t, f) = Z Z ¢(v,)z(t + v+ Dz*(t +v — e ] (3)
v=—00 [=—00
where ¢(v,1) is a kernel function and * denotes complex conjugate. The STFD matrix is
obtained by replacing z(t) by the data snapshot vector x(t),
Dy (t, f) = Z Z¢le(t+v+l) H(t+v l)e~ i1t (4)
V=—00 l=—00

Substitute (1) into (4), we obtain

Dxx(t7 f) = DYY(t’ f) + Dyn(t’ f) + Dn)'(t7 f) + Dnn(t7 f) (5) ‘

We note that Dyxx(t, ), Dyy(t, ), Dyn(t, f), Duy(t, f), and Dy,(¢, f) are matrices of
dimension m X m. Under the uncorrelated signal and noise assumption and the zero-mean
noise property, the expectation of the crossterm STFD matrices between the signal and

noise vectors is zero, i.e., E [Dy,(t, f)] = E [Day (2, f)] = 0. Accordingly,

E [Dxx(ta f)] - Dy}’(t7 f) + E [Dnn(tv f)]
- ADdd(t7 f)AH +E [Dlm(ta f)] ’ (6)

where the source TFD matrix

Daalt, f) = Z Z é(v,1 d(t+v+l)dH(t+v [)e~I4mit (7
v=—00 I=—00 ' .
is of dimension n X n. For narrowband array signal processing applications, the mixing
matrix A holds the spatial information and maps the auto- and cross-TFDs of the source
signals into auto- and cross-TFDs of the data.
Equation (6) is similar to the formula that has been commoniy used in direction finding
and blind source separation problems, relating the signal correlation matrix to the data
spatial correlation matrix. In the above formulation, however, the correlation matrices

are replaced by the STFD matrices. The well established results in conventional array

signal processing could, therefore, be utilized and key problems in various applications of
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array processing, specifically those dealing with nonstationary signal environments, can
be approached using bilinear transformations.

Initially, only the time-frequency (t-f) points in the autoterm regions of TFD are con-
sidered for STFD matrix construction. The autoterm region refers to the t-f points along
the true instantaneous frequency (IF) of each signal. The crossterms, which can intrude
on the autoterms through the power in their mainlobes or/and sidelobes, were avoided.
This intrusion depends on the signal temporal structures and the window size. Recéntly,
the crossterms have also been utilized and integrated into STFDs. The effect of crossterms
on direction finding and blind source separation will be discussed in IV-C and V-C, re-
spectively. In the other parts of this chapter, it is assumed that the t-f points reside in an

autoterm region, which has negligible crossterm effect.

C. Joint-Diagonalization and Time-Frequency Averaging

In the rest of this chapter, we will address the application of STFDs to direction finding
and blind source separation. These applications are based on the eigendecomposition of
the STFD matrix. In direction finding, the source TFD matrix must be full rank (Section
V), whereas, to perform blind source separation, the source TFD matrix must be diagonal
(Section IV). For either case, the STFD matrix of the data vector should be full column
rank.

It is noted that the relationship (6) holds true for every (¢, f) point. In order to en-
sure the full column rank property of the STFD matrix as well as to reduce the effect of
noise, we consider multiple t-f points, instead of a single one. This allows more informa-
tion of the source signal t-f signatures to be included into their respective eigenstructure
formulation, and as such enhances direction finding and source separation performance.
Joint-diagonalization and t-f averaging are the two main approaches that have been used

for this purpose [8],[9], [12].




C.1 Joint Diagonalization

The JD can be explained by first noting that the problem of the diagonalization of a

single n X n normal matrix M is equivalent to the minimization of the criterion [13]

C(M,V) Z ]vHMv,] | (8)
over the set of unitary matrices V = [vy,---,v,]. Hence, the JD of a set {Mk|k =
1,---,K} of K arbitrary n X n matrices is defined as the minimization of the following

JD criterion:
Cc(V)= Z C(M,V) =

[ (9)

under the same unitary constraint. It is 1mportant to note that the above definition of
JD does not require the matrix set under consideration to be exactly and simultaneously
diagonalized by a single unitary matrix. This is because we do not require the off-diagonal
elements of all the matrices to be cancelled by a unitary transform; a joint diagonalizer
is simply a minimizer of the criterion. If the matrices in M are not exactly joint diag-
onalizable, the criterion cannot be zeroed, and the matrices can only be approximately
joint diagonalized. Hence, an (approximate) joint diagonalizer defines a kind of average

eigenstructure.

C.2 Joint Block-Diagonalization

For direction finding methods such as t-f MUSIC, the source TFD matrix should not be
singular but not necessarily diagonal. In this case, the joint block-diagonalization (JBD)
is used to incorporate multiple t-f points rather than JD [9]. The JBD is achieved by the

maximization under unitary transform of the following criterion

2
CU) =33 [ufMu,| (10)
kil v
over the set of unitary matrices U = [uy, - -, u,].

C.3 Time-Frequency Averaging

Time-frequency averaging is a linear operation that adds the STFDs over a t-f region

where, typically, the desired signal is highly localized and the crossterms are negligible.

52




The averaged STFD is defined as

1
D= Z Z Dxx(t7 f) (11)

(t.f)eQ
where € is the t-f region of interest and A is a normalization constant which, for example,

can be chosen as the total number of (¢, f) points in the region Q. The eigendecomposition

of D is addressed in III-C.

II1. Properties of STFDs

To understand the properties of STFDs, we consider the case of frequency modulated
(FM) signals and the simplest form of TFD, namely, the pseudo Wigner-Ville distribution
(PWVD) [14]. The consideration of FM signals is motivated by the fact that these signals
are uniquely characterized by their IFs, and therefore, they have clear t-f signatures that
can be utilized by the STFD approach. Also, FM signals have constant amplitudes.

The FM signals can be modeled as

d(t) = [di(1), - da(®)]" = [D1™®, ..., DO, (1)

where D; and );(t) are the fixed amplitude and time-varying phase of ith source signal.
For each sampling time ¢, d;(t) has an instantaneous frequency fi(t) = di;(t)/(2mdt).

The discrete form of PWVD of a signal z(¢), using a rectangular window of odd length
L, is a special case of (3) and is given by

(L-1)/2 .
Do.(t, f)= Y. az(t+7)z*(t—r)e I ()
r=—(L-1)/2

Similarly, the spatial pseudo Wigner-Ville distribution (SPWVD) matrix is obtained by
replacing z(t) by the data snapshot vector x(z),

(L-1)/2 ‘
Dy,x(t, f) = Z x(t+ )xH(t — _7')6—‘74wa. (3)
7=—(L—1)/2

A. Subspace Analysis for FM Signals
Analysis of the eigendecomposition of the STFD matrix is closely related to the anal-

ysis of subspace decomposition of the covariance matrix [15]. Before elaborating on this
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relationship, we present the case of FM signals using the conventional covariance matrix
approach.

In equation (1), it is assumed that the number of sensors is greater than the number of
sources, i.e., m > n. Further, matrix A is full column rank. We further assume that the

correlation matrix
Rax = Ex(t)x" (t)] (4)

is nonsingular, and the observation period consists of N snapshots with N > m. Under

the above assumptions, the correlation matrix is given by
R, = E[x(t)x"(t)] = ARGAT 401, (5)

where Raq = E[d(t)d¥ ()] is the source correlation matrix.

Let A\ > Xg > -+ > Ay > Aus1 = Apyo = -+ = Ay, = 0 denote the eigenvalues of Ryy.
It is assumed that \;, i = 1,---,n, are distinct. The unit-norm eigenvectors associated
with Aq, ..., A, constitute the columns of matrix S = [s;, ..., s,], and those corresponding
t0 Ans1, .- Ay make up matrix G = [gy, ..., Bm—n)- Since the columns of A and S span the
same subspace, then AZG = 0.

In practice, Ry is unknown, and therefore should be estimated from the available data

samples (snapshots) x(7), ¢ = 1,2, ..., N. The estimated correlation matrix is given by
. 1 X '
R = = > x(8)x7(3). (6)
N =1

Let {81,...,84,81, -, &m-n} denote the unit-norm eigenvectors of f{xx, arranged in the
descending order of the associated eigenvalues, and let S and G denote the matrices
defined by the set of vectors {§;} and {g;}, respectively. The statistical properties of
the eigenvectors of the sample covariance matrix R, for signals modeled as independent
processes with additive white noise are given in [15].

We assume that the transmitted signals propagate in a stationary environment and
are mutually uncorrelated over the observation period 1 < ¢t < N. Subsequently, the

corresponding covariance matrices are time-independent. Under these assumptions,
1 N
Nkz:ldi(k)d;(k) =0 fori#j 4,5=1,..,n. (7).
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In this case, the signal correlation matrix is
Rgq = li letht—d‘ DI i=1,2 8
dd_TﬁEof; () ()“ Za‘g[ ir =1, ,...,’Tl] ()

where diag[-] is the diagonal matrix formed with the elements of its vector valued argu-
ments. From the above assumptions, we have the following Lemma. |
Lemma 1 [14]: For uncorrelated FM signals with additive white Gaussian noise,
a) The estimation errors (§; — s;) are asymptotically (for large N) jointly Gaussian

distributed with zero means and covariance matrices given by

E[(8: —5:)(8; —8,)"]

o |l & AN+ A —o0 H ~ A H (9)
=— |V s Y 8ii»
N [% (= 5%+ 2 x| O
Ai+Aj—0)
E (3 —s:)(3; —s;)T :—i(—l—-i-;—s»sf’1—5i~. 10
(6 =806 = ))"] =~ 5 s (1= ) (10)
where L i
? Z: k)
61',3':{ J
0, i#j.

b) The orthogonal projections of {g;} onto the column space of S are asymptotically
(for large N) jointly Gaussian distributed with zero means and covariance matrices given

by

E [(SSHéi) (SSHQJ')H} = % [;:;1 ((;*;/\—'i\:)zsksf J 65 & %U%, (11)
E [(sngi) (sng,-)T] —0 foralli, j. W

Equations (9) and (10) hold strong similarity to those of [15]. The only difference is that the
term (A\;\g) in [15] is replaced by o(A; + A — o) in (9) and (10), due to the uncorrelation
property (7). Equations (11) and (12) are identical to those derived in reference [15].

B. SNR Enhancement

The TFD maps one-dimensional signals in the time domain into two-dimensional signals

in the t-f domain. The TFD property of concentrating the input signal around its IF
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while spreading the noise over the entire t-f domain increases the effective SNR and proves
valuable in the underlying problem.

The ith diagonal element of PWVD matrix Dgaq(t, f) is given by

(L-1)/2
Duya,t, )= > D2eIWiltHm)=vilt=m)|-jdnfr (13)
T=—(L-1)/2

Assume that the third-order derivative of the phase is negligible over the window length
L, then along the true t-f points of the ith signal, f;(t) = di;(¢)/(2ndt), and ¥;(t + 7) —
¥i(t — 1) — 4n f;(t)7 = 0. Accordingly, for (L —1)/2 <t < N— (L —-1)/2,

' (L-1)/2

Dua(t, fi(t)) = > Di=LDj. (14)
7=—(L-1)/2
Similarly, the noise SPWVD matrix Dpa(2, f) is
(L-1)/2 _
Dun(t, f)= >, n(+ 7)nf (t — 7)e 94T, (15)
T=-(L-1)/2 .

Under the spatially and temporally white assumptions, the statistical expectation of

Duna(t, f) is given by

(L-1)/2
EDumt = > E [n(t +7)nf(t — 7’)] e IIT = o1 (16)

r=—(L-1)/2
Therefore, when we select the t-f points along the t-f signature or the IF of the ith FM
signal, the SNR in the model (6) becomes LD? /o, which has an improved factor L over
the one associated with model (5). The IF of the FM signals can be estimated from the
employed TFD, or using any appropriate IF estimator. It is noted, however, that the
STFD equation (6) provides a natural platform for the direct incorporation of any a priori
information or estimates of the IF into direction-of-arrival (DOA) estimation.

The PWVD of each FM source has a constant value over the observation period, pro-
viding that we leave out the rising and falling power distributions at both ends of the
data record. For convenience of analysis, we select those N’ = N — L + 1 t-f points of
constant distribution value for each source signal. In the case where the STFD matrices
are averaged over the t-f signatures of n, sources, i.e., a total of n,N' t-f points, the result
is given by

b=t

o
> Zl Dix(ti, foi(ti), (17)

q=1li=
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where f,;(t;) is the IF of the gth signal at the ith time sample. x(t) is an instantaneous
mixture of the FM signals d;(t),i = 1,- - -, n, hence features the same IFs. The expectation

of the averaged STFD matrix is

" 1 R N’
D = B[D] = 155 3. 2 Bt i)
1 S L o 4] o
= E; [LD2agall + 01| = ARG (A7) + 0T, (18)

where Ry, = diag[D?,i=1,2,---,n,] and A° = [a;,ay,---,a,,] represent the signal
correlation matrix and the mixing matrix formulated by considering n, signals out of the
total number of n signal arrivals, respectively.

It is clear from (18) that the SNR improvement G = L/n, (we assume L > n,) is
inversely proportional to the number of sources contributing to matrix D. Therefore, from
the SNR perspective, it is best to set n, = 1, i.e., to select the sets of N’ t-f points that
belong to individual signals one set at a time, and then separately evaluate the respective
STFD matrices.

This procedure is made possible by the fact that STFD-based array'processing is, in
essence, a discriminatory technique in the sense that it does not require simultaneous
localization and extraction of all unknown signals received by the array. With STFDs,
array processing can be performed using STFDs of a subclass of the impinging signals with
specific t-f signatures. In this respect, the t-f based blind source separation and direction
finding techniques have implicit spatial filtering, removing the undesired signals from con-
sideration. It is also important to note that with the ability to construct the STFD matrix
from one or few signal arrivals, the well known m > n condition on source localization
using arrays can be relaxed to m > n,, i.e., we can perform direction finding or source
separation with the number of array sensors smaller than the number of impinging signals.
Further, from the angular resolution perspective, closely spaced sources with different t-f
signatures can be resolved by constructing two separate STFDs, each corresponding to one
source, and then proceed with subspace decomposition for each STFD matrix, followed by
an appropriate source localization method (MUSIC, for example). The drawback using

different STFD matrices separately is of course the need for repeated computations.
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C. Signal and Noise Subspaces Using STFDs

The following Lemma provides the relationship between the eigendecompositions of the
STFD matrices and the data covariance matrices used in conventional array processing.

Lemma 2 [14]: Let A > X3 > - > A% > X0 ., = A ., = --- = A, = o denote
the eigenvalues of R2, = A°R%4(A°)¥ + oI, which is defined from a data record of a
mixture of the n, selected FM signals. Denote the unit-norm eigenvectors associated with

%, .., A by the columns of 8° = [sf,...,s7 | , and those corresponding to XJ_,,, , e,

by the columns of G° = [g%, ...,g%_,.]. We also denote A > )\ > ... >\ >\ | =

M o =---= ) = g*/ as the eigenvalues of D defined in (18). The superscript * denotes
that the associated term is derived from the STFD matrix D. The unit-norm eigenvectors

st/,...,s], and those
tf tf ]
1o .

<y Bm—n,

associated with AY, ..., Xt/ are represented by the columns of St = |
corresponding to /\f{: +1>-- A are represented by the columns of G¥ = [g
Then,

a) The signal and noise subspaces of St/ and G*/ are the same as S° and G?°, respectively.

b) The eigenvalues have the following relationship:

o £(A3—0)+0:£A§’+(1—£)0 i<n,
Ai = o L (19)

L)
otf =¢ Ne <1 < m.

An important conclusion from Lemma 2 is that, the largest n, eigenvalues are ampliﬁed
using STFD analysis. The amplification of the largest n, eigenvalues improves detection
of the number of the impinging signals on the array, as it widens the separation between
dominant and noise-level eigenvalues. Determination of the number of signals is key to
establishing the proper signal and noise subspaces, and subsequently plays a fundamental
role in subspace-based applications. When the input SNR is low, or the signals are closely
spaced, the number of signals may often be underdetermined. When the STFD is applied,
the SNR threshold level and/or angle separation necessary for the correct determination
of the number of signals are greatly reduced.

Next we consider the signal and noise subspace estimates from a finite number of data
samples. We form the STFD matrix based on the true (¢, f) points along the IF of the n,
FM signals. |

Lemma 3 [14], [10]: If the third-order derivative of the phase of the FM signals is
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negligible over the time-period [t — L + 1,4+ L — 1], then
a) The estimation errors in the signal vectors are asymptotically (for N > L) jointly

Gaussian distributed with zero means and covariance matrices given by

B (s -) 5/ -))"

oL e /\tf‘*‘)\t — 0 tf f m_To i f H
noN’ ,,:z#; (Atf /\ff)Q Sk (Sk> + Z (0_ /\tf)g 8k (gk) 61,]

P (M =0)+ (M -0)+ 0,
N ST

= F 2
ki
m—To /\"—a +40 o/ o
+ Z ( ) )2 g (gk)H] 0i 55 (20)

and

E (8 —stf) sV —s¥)"
_ oL (/\:f + )\;f - O')Stf (Stf)T (1 B 5 )
nONI ()\;f _ )\:f)2 J 1 12%)

o AN-—o)+ (N —0o)+T20 , T
- N’ ()\](; . )\;_))2 Sj (sz) (]' 617])‘ (21)

b) The orthogonal projections of '{gff } onto the column space of St are asymptotically

(for N > L) jointly Gaussian distributed with zero means and covariance matrices given

by
B (s (s)"g¥) (s (s¥) g;f)H
-t S €] o
-7 [ @] 6

def 1
U8 (22)
E(Stf (Szf)”g;f> (stf (s¥) g;f) =0 for all i, j. (23)

From (20)-(23), two important observations are in order. First, if the signals are both

localizable and separable in the t-f domain, then the reduction of the number of signals
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from n to n, greatly reduces the estimation error, specifically when the signals are closely
spaced. The second observation relates to SNR enhancements. The above equations show
that error reductions using STFDs are more pronounced for the cases of low SNR and/or
closely spaced signals. It is clear from (20)—(23) that, when A > o for all k = 1,2, ..., n,,
the results are almost independent of L (suppose N > L so that N' = N—L+1 ~ N), and
therefore there would be no obvious improvement in using the STFD over conventional
array processing. On the other hand, when some of the eigenvalues are close to o (A} ~ o,
for some k = 1,2, ...,n,), which is the case of weak or closely spaced signals, all the results
of above three equations are reduced by a factor of up to G = L/n,, respectively. This

factor represents, in essence, the gain achieved from using STFD processing.
IV. Blind Source Separation

A. Source Separation Based on STFDs

Blind source separation based on STFD was first considered by Belouchrani and Amin
[8]. The first step of STFD-based blind source separation is the whitening of the signal
part y(t) of the observation. This is achieved by applying a whitening matrix W to y(t),

i.e., an n X N matrix satisfying:

Jim % gWy(t)yH(t)WH = WR,, W = WAA#A¥ =1 (1)
WA is an n X n unitary matrix U, and matrix A can be written as

A =W*#*U | (2)
where superscript # denotes pseudo-inverse. The whitened process z(t) = Wx(t) still

obeys a linear model,
z(t) = Wx(t) = W [As(t) + n(t)] = Us(t) + Wn(t). (3)
By pre- and post—multiplying the STFD matrices Dyx(t, f) by W, we obtajn
Dyy(t, f) = WDx(t, )W (4)

which is, in essence, the STFD of the whitened data vector z(t). From the definitions of
W and U,
D,,(t, f) = UDss(t, f)UH (5)
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Equation (5) shows that if Ds(¢, f) is diagonal, which is the case of autoterm points, then
any whitened data STFD matrix is diagonal in the basis of the columns of the matrix U,
and the eigenvalues of D,,(¢, f) are the diagonal entries of Dg(t, f). An estimate U of
the unitary matrix U may be obtained as a unitary diagonalizing matrix of a whitening
STFD matrix for some t-f points corresponding to the signal autoterm. The source signals
can then be estimated as §(t) = ﬁWx(t), and the mixing matrix A is estimated by
A = W#(Q.

In order to reduce the noise effect as well as the possibility of having degenerate eigen-
values and subsequently non-unique solutions,' the JD and t-f averaging, both discussed in
II-C, can be used to incorporate multiple t-f points.

The method discussed above uses STFD matrices to estimate the unitary matrix U,
but the covariance matrix is still used for whitening. Therefore, the advantages of STFD
matrices are not fully utilized. Using the STFD matrix D, instead of the covariance
matrix Ry, to perform whitening is a reasonable alternative [11]. To avoid degenerate
eigenvalues, the STFD matrices used for pre-whitening and unitary matrix estimation

should be different.

A.1 Example

Fig. 1 shows an example of the application of STFDs to the BSS problem. A three-
element equi-spaced linear array is considered where the interelement spacing is half a
wavelength. Two chirp signals arrive at —10° and 10°, respectively. The numb_er of data
samples used to compute the STFD is 128. The number of t-f points employed in the JD is
p=128, with equal number of points on each signature. Fig. 1(b) shows the Choi-Williams
distributions, in which an exponential kernel is applied [16], of two linear mixtures of the
original chirp signals depicted in Fig. 1(a), corresponding to the data at the first and the
second sensors. Using JD of the STFDs, we are able to recover the original signals from

their observed mixture, as shown in Fig. 1(c).

B. Source Separation Based on Spatial Averaging

Source separation based on spatial averaging is proposed by Mu, Amin, and Zhang [17].

This method first performs array averaging of the TFDs of the data across the array,
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Fig. 1. Blind source separation based on STFDs.

permitting the spatial signature of sources to play a fundamental role in improving the
synthesis performance.

This method is philosophically different from the one described in the previous section, |
as it applies the opposite order of operations. It first synthesizes the source signals from
the t-f domain, then proceeds to estimate their respective mixing matrix.

The WVD-based synthesis techniques could be found in [18], [19]. Herein, we apply the
method of extended discrete-time Wigner distribution (EDTWD), introduced in [19], to
the output of array averaged WVD. The advantage of using the EDTWD lies in the fact
that it does not require a priori knowledge of the source waveform, and thereby avoids the

problem of matching the two “uncoupled” vectors (even-indexed and odd-indexed vectors).
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The overall synthesis procedure is summarized in the following steps.

1. Given the received data of the ith sensor z;(t), compute the EDTWD
W.‘IJiZi (t7 f) = Z .'L',(t + k/2)$l* (t - k/Z)e_jzﬂ-kfv
k:(t+k/2)eZ ;
t=0,405+1,.... (6)
2. Apply the averaging process, that is, summing the EDTWD across the array
- 1>
W(t: f) = m Z Wiz, (t’ f) (7)
L ==

3. Place an appropriate t-f mask on W (¢, f) such that only the desired signal autoterms

- are retained.

4. Take the IFFT of the masked WVD W(¢, f)
p(t,7) =Y W(t, fle™ . (8)
I

5. Construct the matrix Q = [g] with

 + 1.
qiz=p(22 ,z—l)- 9)

6. Apply eigendecomposition to the Hermitian matrix [{Q + Q%] and obtain the maximum

eigenvalue An.y and the associated eigenvector u. The desired signal is given by

§opt = eja V 2)‘maa: u, (10)

where « is an unknown value representing the phase.
7. Repeat step 3 through 6 until all source signals di (£),da(%), . .., dp(t) are retrieved.
The averaging in step 2 mitigates the crossterms and enforces the autoterms. As such,
the source t-f signatures become easier to identify, mask, and synthesize. It is notewor-
thy that (7) will completely suppress the cross-TFDs for sources with orthogonal spatial
signatures.
Upon synthesizing all the source signals, we could utilize these signal waveforms to
estimate the mixing, or array, matrix A through the minimization of the mean square

error (MSE), |
N o
€= tZ_; lIx(t) — AS@)II" (11)
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This results in

A=iRL (12)
where R = YN, a(t)aH (t) represents the estimated signal source covariance matrix, and
# = [f1,...,Fg], with & = SN, x(t)d(t) being the correlation vector between the data

vector received across the array and the ith source signal d;(t).

B.1 Example

We consider three parallel chirp signals. The signals arrive with DOAs of —20°, 0° and
20°, with the respective start and end frequencies given by (0.97,0.57), (0.66m,0.267),
and (0.5m,0.17), respectively. The length of the signal sequence is set to N = 128. The
input SNR is —5 dB. The crossterm of d;(¢) and d3(¢) lies closely to the t-f signature of
da(t).

We first consider the single antenné case. Fig. 2 depicts both the WVD of the signal
arrival and the WVD of the synthesized d}(t). The signal is significantly corrupted by the
crossterm of d;(t) and ds(¢) as well as by the noise components.

Figure 3 depicts, for 16 sensor scenarios, the array averaged WVD and thev respective
Jz(t). Upon averaging, both noise and crossterms are sufficiently reduced to clearly man-
ifest the individual source t-f signatures. The signals could, therefore, be individually
recovered by placing appropriate masks in the t-f region. The significance of using arréy

sensors is evident in Fig. 3.

WVD of synthesized signal

Fig. 2. WVD and the synthesized signal (M = 1).
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Fig. 3. WVD and the synthesized signal (M = 16).

C. Effect of Crossterms between Source Signals

In this section, we examine the effect of the t-f crossterms on source separation perfor-
mance [20]. To simplify the problem, we assume that Rgq is an identity matrix. When

crossterms are present at the off-diagonal elements of the TFD matrix Dgaq(t, f), then

Daa(t, f) = P(t, f)G(t, /)PH (2, f) (13)

where G(t, f) is the diagonal matrix with the eigenvalues at the diagonal elements, and
P(t, f) is the matrix whose columns are the corresponding eigenvectors. Note that all the
above matrices depend on the selected (¢, f) point. From (13), the STFD matrix of the

data vector under noise-free conditions becomes
Dolt, f) = ADws(t, f)A" = AP(, ))G(t, )PP (5, )AT  (14)
and the STFD matrix of the whitened array signal vector is
D..(t, f) = WAP(t, /)G(t, /)PH(t, ) ATWH. (15)

Since G(¢, f) is diagonal, WAP(¢, f) is unitary. Therefore, the source separation method

will assume WAP(¢, f) as the unitary matrix and estimates the mixing matrix as
A = W*WAP(t, f) = AP(t, f) (16)
which is dependent on the unitary matrix P(t, f). Furthermore,

A*A = [AP(, )] A =PH(t, f). (17)
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Matrix A should be close to the true one A so that A#*A well approximates the iden-
tity matrix. The following variable measures, at separations, the ratio of the power of

interference of the gth source Signal to the power of the pth source signal [8]

Iy = El(A#A)pq 2, (18)

where (A#A)pq denotes the (p,q)th element of matrix A#A. The following global
rejection level is used to evaluate the overall performance of a blind source éeparation

system
Lpers = Z Ty (19)

g#p
For the mixing matrix estimation given in (17), the global rejection level is approximated

by the following normalized global rejection level [20]

perf —

ot = [dz'agonal (A#A)] A*A = Xn; [pea(t, )12 = n. (20)
=

where diagonal (F) denotes the matrix formed by the diagonal elements of F. In general,
since the absolute values of pg(t, f) are always equal to or smaller than 1, the global
rejection level I, ; takes a positive value. It is clear that I,.,; = 0 only when pge(2, f) =1
holds true for all g¢. That is, P is an identity matrix, which implies that there is no

off-diagonal non-zero elements in matrix Dqq(t, f), i-e., no crossterms.

D. Source Separation Based on Joint Diagonalization and Joint Anti-Diagonalization

From the previous subsection, it is clear that care must be exercised when dealing with
crossterms. The method, proposed by Belouchrani, Abed-Meraim, Amin, and Zoubir [21],
carefully and properly exploits both autoterms and crossterms of the TEDs for improved
source separation. This approach is based on the simultaneous diagonaliiation and anti-
diagonalization of a combined set of autoterm and crossterm TFD matrices, respectively.

The auto-STFD and cross-STFD are defined as
Dg,(t, f) = Dss(¢, f) for autoterm t-f points (21)

and

DS (t, f) = Dgs(t, f) for crossterm t-f points. | (22)
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Since the off-diagonal elements of Ds(, f) are crossterms, the auto-STFD matrix is quasi
diagonal for each t-f point that corresponds to a true power concentration, i.e. signal
autoterm. Similarly, since the diagonal elements of D(t, f) are auto-terms, the cross-
STFD matrix is quasi anti-diagonal (i.e. its diagonal entries are close to zero) for each t-f
point that corresponds to a crossterm.

As discussed earlier, JD can be used to incorporate multiple autoterm t-f points. Simi-
larly, the joint anti-diagonalization (JAD) is appropriate to incorporate multiple crossterm
t-f points. By selecting crossterm t-f points, the data cross-STFD will have the following
structure,

DL, (¢, ) = UDS,(t, f)U" (23)
where D¢(¢, f) is anti-diagonal. The JAD searches for the unitary matrix that anti-
diagonalizes a combined set {DS, (¢;, fi)|i =1, -+, ¢} of ¢ STFD matrices. The procedure
for anti-diagonalization of a single m x m matrix N is explained in [21] and is equivalent

to the maximization of the criterion

2

C(N,V) ¥ -} [vFNv, (24)
=1

over the set of unitary matrices V = [vy,- -+, vp].
The combined JD and JAD of two sets {M]k = 1..p} and {Ni|k = 1..q} of m x m
matrices is defined as the maximization of the JD/JAD criterion:

CV)E S (f; = kz:jl VAN 2) (25)

=1 \k=1

H

over the set of unitary matrices V = [vy, -+, Vp)].

D.1 Selection of Autoterm and Crossterm Points

The success of the JD or JAD of STFD matrices in determining the unitary matrix U
depends strongly on the correct selection of the éutoterrﬁ and crossterm points. Therefore,
it is crucial to have a selection procedure that is able to distinguish between autoterm and
crossteirm points based only on the STFD matrices of the observation. A selection approach
was proposed in [21] to exploit the anti-diagonal structure of the crossterm STFD matrices.

More precisely,

Trace(Dy(t, f)) = Trace(UDZ(t, f)U¥) = Trace(DL, (¢, f)) ~ 0.
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Based on this observation, the following testing procedure can be defined:

Trace(Dyx(t, f))

norm(Dyx (¢, f))
Trace(Dxx(t, f))

norm(Dy (¢, f))

where € is a ‘small’ positive real scalar.

< € — decide that (¢, f) is a crossterm

> ¢ — decide that (¢, f) is an autoterm

D.2 Example

We consider a uniform linear array of m = 3 sensors having half wavelength spacing
and receiving signals from n = 2 sources in the presence of white Gaussian noise. The
sources arrive from different directions #; = 10 and 6, = 20 degrees. The emitted signals
are two chirps. The WVD is computed over 1024 samples and eight STFD matrices are
considered. '

We compare in Fig. 4 the performance of the JD-based algorithm, introduced in IV-A|
and the JD/JAD algorithm, for SNRs in the range [5 — 20 dB]. The mean rejection levels
are evaluated over 100 Monte Carlo runs. In this case, the new algorithm performs slightly

better than the JD-based algorithm.

= Cross-TFS
TS

&
>

)
%
2

‘Moan rejection level (4B)
! L

¥ & & 4 & &
/

&

SNR (dB)

Fig. 4. Mean rejection level versus input SNR for JD and JD/AJD based source separation methods.

V. Direction Finding
A. Time-Frequency MUSIC

The t-f MUSIC was proposed by Belouchrani and Amin [9], and its performance is
analyzed by Zhang, Mu, and Amin [14]. Without loss of generality, we consider one-

68




dimensional direction finding where the DOAs are described by 6. First, recall that the
DOAs are estimated in the MUSIC technique by determining the n values of 6 for which
the following spatial spectrum is maximized [22],

-1

-~ -~ _1 ~ A
Farw(6) = [aH(e)GGHa(e)] - [aH(B) (I - ssH) a(G)] , (1)
where a(f) is the steering vector corresponds to §. The variance of those estimates in the
MUSIC technique, assuming white noise processes, is given by [15]

R 2 1 aH(Hz)Ua(O,)
E (wi — w,-) = ‘2—]\7_‘_‘};’@“"‘ (2)

where w; = (27d/A)sin; is the spatial fréquency associated with DOA 6;, and ©; is its
estimate obtained from the MUSIC. Moreover, U is defined in (11), and

h(6;) = d¥(6,)GGHd(6;), with d(6;) = da(6;)/dw. (3)

Similarly, for t-f MUSIC with n, .signals selected, the DOAs are determined by locating

the n, peaks of the spatial spectrum defined from the n, si;gnals’ t-f regions,
A A e\ H -1 ae o\ H -1
fiho6) = [a" @G (&) @) = [a"0) (1-87 (87)")a)] . @

G and S can be obtained by using either JBD or t-f averaging (section II-C). When
the t-f averaging is used, using the results of Lemmas 2 and 3, the variance of the DOA

estimates based on t-f MUSIC is obtained as [14],

t 2 1 H 91 Utf 9,;
E (wif - wi) = QNra (hzf(gi)a( ) (5)

where &Y is the estimate of w;, U is defined in (22), and
1 (6:) = a7 (6,)GY (G¥)" a,). | (6)
Note that ht/ () = h(8;) if n, = n.

A.1 Examples

Consider a uniform linear array of 8 sensors spaced by half a wavelength, and an obser-

vation period of 1024 samples. Two chirp signals emitted from two sources positioned at
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angle 8, and ;. The start and end frequencies of the signal source at 8, are w;; = 0 and
wey = m, while the corresponding two frequencies for the other source at 0y are wy, = 7
and wes = 0, respectively.

Fig. 5 displays the variance of the estimated DOA 6, versus SNR for the case (01,05) =
(—10°,10°). The curves in this figure show the theoretical and experimental results of the
conventional MUSIC and t-f MUSIC (for L=33 and 129). The Cramer-Rao bound (CRB)
is also shown in Fig. 5 for comparison. Both signals were selected when performing t-f
MUSIC (n, = n = 2). Simulation results were averaged over 100 independent Monte-
Carlo runs. The advantages of t-f MUSIC in low SNR cases are evident from this figure.
The experiment results deviate from the theoretical .results for low SNR, since we only
considered the lowest order of the coefficients of the perturbation expansion in deriving
the theoretical results [14]. Fig. 6 shows estimated spatial spectra at SNR=—20 dB based
on t-f MUSIC (L = 129) and the conventional MUSIC. The t-f MUSIC spectral peaks are
clearly resoh.red.

Fig. 7 shows examples of the estimated spatial spectrum based on t-f MUSIC (L = 129)
and the conventional MUSIC where the angle separation is small (§; = —2.5°, 6, = 2.5°).
The input SNR is —5 dB. Two t-f MUSIC algorithms are performed using two sets of
t-f points, each set belongs to the t-f signature of one source (n, = 1). It is evident
that the two signals cannot be resolved when the conventional MUSIC is applied, Whereaé
by utilizing the signals’ distinct t-f signatures and applying t-f MUSIC separately for
each mgnal the two signals become clearly separated and reasonable DOA estimation 1s
achieved. It is noted that there is a small bias in the estimates of t-f MUSIC due to the

imperfect separation of the two signals in the t-f domain.

B. Time-Frequency Mazimum Likelihood Method

In this section, we introduce the time-frequency maximum likelihood (t-f ML) methods.
This method was proposed by Zhang, Mu, and Amin [10] to deal with coherent nonsta-

tionary sources. For conventional ML methods, the joint density function of the sampled
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Fig. 5. Variance of DOA estimation versus input SNR.
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Fig. 6. Estimated spatial spectra of MUSIC and t-f MUSIC.

data vectors x(1),x(2), ..., x(NN), is given by [23]
FxQ),. ., x(N)

N 1

B Ul rmdetfol] P (“; [x(i) — Ad(@)]" [x(i) - Ad(i)]) ,

where det[-] denotes the matrix determinant. It follows from (7) that the log-likelihood

(7)

function of the observations x(1),x(2), ...,x(N), is given by
1 X H o .
L = —mNlno — p > [x(8) — Ad(3)]” [x(5) — Ad(z)]. (8)
i=1
To carry out this minimization, we fix A and minimize (8) with respect to d. This yields

the well-known solution

d() = [AZA]™ A"x(s). 9)
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Fig. 7. Estimated spatial spectra of MUSIC and t-f MUSIC for closely spaced signals.
We can obtain the concentrated likelihood function as [23]
Fup(©) =tr {[1- A(ATA)'A"| Ry}, (10)

where tr(A) denotes the trace of A. The ML estimate of © is obtained as the minimizer
of (10). Let w; and &;, respectively, denote the spatial frequency and its ML estimate
associated with 6;, then the estimation error (&; — w;) are asymptotically (for large N)

jointly Gaussian distributed with zero means and the covariance matrix [24]

. 2 1
E[(wi——wi)]zm

xRe [H® (RaaA"UARqa)"| [Re(H © RY)]

[Re(H © Rgd)]_l
4 (11)

where ©® denotes Hadamard product, U is defined in (11). Moreover,
H=C"[I- A(AFA)'A"|C, with C=dA/dw. (12)

Next we consider the t-f ML method. As we discussed in the previous section, we select
n, < n signals in the t-f domain. The concentrated likelihood function defined from the

STFD matrix is similar to (10) and is obtained by replacing Ry by D,
F (@) =tr [1 — Ao ((A)FAY)” (AO)H] D. (13)

Therefore, the estimation error (& — w;) associated with the t-f ML method are asymp-

totically (for N > L) jointly Gaussian distributed with zero means and the covariance
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matrix [10]

TN
xRe [H"O (Ddd(AO)HUtf AoDdd)T] [RG(HO © ng)]_l

E [(wff —wi)2] 0 [Re(H* @ DLy

. _1 (14
= o7 [Re (H° © (R%,)")]
xRe [H © (Réa (A")HUth"R‘(’,d)T] [Re ((H° © R3,)")] -
where UY is defined in (22), and
H = (C°)¥ [1 —A° ((AO)”A")“1 (A")H] C°, with C°=dA’/dw. -  (15)

In the case of n, = n, then H° = H, and C° = C.

The signal localization in the t-f domain enables us to select fewer signal arrivals. This
fact is not only important in improving the estimation performance, particularly when
the signals are closely spaced, but also reduces the dimension of the optimization problem
solved by the maximum likelihood algorithm, and subsequently reduces the computational

requirement.

B.1 Examples

To demonstrate the advantages of t-f ML over both the conventional ML and the t-
f MUSIC, consider a uniform linear array of 8 sensors separated by half a wavelength.
Two FM signals arrive from (0;,6,) = (—10°,10°) with the IFs fi(¢f) = 0.2 + 0.1¢/N +
0.2sin(27t/N) and fo(t) = 0.2 + 0.1¢/N + 0.2sin(27t/N + 7/2),t = 1,..., N. The SNR of
both signals is —20 dB, and the number of snapshots used in the simulation is N = 1024.
We used L=129 for t-f ML. Fig. 8 shows (f;,6,) that yiéld the minimum values of the
likelihood function of the t-f ML and the ML methods for 20 independent trials. It is
evident that the t-f ML provides much improved DOA estimation over the conventional
ML.

In the next example, the t-f ML and the t-f MUSIC are compared for coherent sources.
The two coherent FM signals have common IFs f; 5(t) = 0.2+0.1¢/N +0.2sin(27t/N),t =
1,..., N, with 7/2 phase difference. The signals arrive at (6;,6;) = (—2°,2°). The SNR of
both signals is 5 dB and the number of snapshots is 1024. Fig. 9 shows the contour plots
of the likelihood function of the t-f ML and the estimated spectra of t-f MUSIC for three
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independent trials. It is clear that the t-f ML can separate the two signals whereas the t-f

MUSIC cannot.

Fig. 8. (61,02} which minimize the t-f ML (upper) and ML (lower) likelihood functions.

C. Effect of Crossterms

-t ML

o
&

o, (deg)

20

6, (dog)

Identifying the sources’ t-f signatures often require searching the t-f domain for peak

values. In.some cases, these values correspond to crossterms. Building the STFDs around

only crossterms or a mixture of autoterm and crossterms and its effect on the t-f MUSIC

performance is considered by Amin and Zhang [25]. To understand the tole of crossterms

in direction finding, it is important to compare the crossterms to the cross-correlation

between signals in conventional array processing, whose properties are familiar. The source

TFD matrix takes the following general form,

Daa(t, f) =

-Ddldl (t7 f) Dd1d2 (t, f)
Dd2dl (t7 f) Ddzdz (t, f)

[ D, (t, f)  Dana,(t, f)

Daya, (¢, f)]
Dg,a, (t, f )

andn (t7 f) R

(16)

On the other hand, the covariance matrix of correlated source signals is given at the
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Fig. 9. Contour plots of t-f ML likelihood function (upper) and spatial spectra of t-f MUSIC (lower).

form
Rd1d1 Rd1d2 e Rdldn
Raya, Raga, -+ Raya,
Rgq = ) :2 ’ . ' : (17)
Ry.q, Ra,d, -+ Rand,

where the off-diagonal element Ryq4, = Eld;(t)d;(t)] represents the correlation between
source signals d; and d;. Direction finding problems can usually be solved when the signals
are partially correlated, however, full rank property of the source covariance matrix Raq
is a necessary condition.

Comparing equations (16) and (17), it is clear that the cross-correlation terms and the
crossterms have ahalogous forms. However, the correlation matrix in (17) is defined for-
stationary signal environments, whereas the source TFD matrix in (16) is defined at a
(¢, f) point and its value usually varies with reépect to ¢t and f. Detailed observations are

made through the following example.

C.1 Example

Consider a six-element linear array with half-wavelength inter-element spacing, and two
chirp signal arrival. The start and end frequencies of the first signal d;(t) are f;; = 0.1

and f,. = 0.5, and those for the second signal dy(t) are fo, = 0 and fo, = 0.4, respectively.
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The SNR is 10 dB for each signal, and the DOAs of the two signals are §; = —5° and
0, = 5",‘ respectively. The number of samples is 256. PWVD is used and the window
length is N = 129.

We consider the autorérms and the crossterms over the following two regions: i) au-
toterm regions (¢, f1) with f1(t) = 0.1 +0.4¢/N and (¢, f») with fo(t) = 0.4¢/N, where the
autoterms are dominant; and ii) crossterm region (¢, f.) with f.(t) = [f1(t) + f(0)]/2 =
0.05 + 0.4¢/N, where the crossterms are dominant. Both the autoterm and crossterm
regions have large peak values and are most likely to be selected.

i) Autoterm regions. In the autoterm region of d;(t), (¢, f1), the autoterm of d,(¢) is
constant. The autoterm of d»(t) and the crossterm between dy(¢) and d(¢) are relatively
small. Since the STFD matrix in the autoterm region has dominant diagonal elements with
constant values, incorporating only autoterm points, either by JBD or by t-f averaging,
usually provides good direction finding performance. |

ii) Crossterm regions. In this region the crossterms Dg,q,(t, f) = D}, 4 (¢, f) are domi-
nant. Therefore, the source TFD matrix on the crossterm region is nearly anti-diagonal.
Note that this source TFD niatrix is still full rank (although not necessarily positive def-
inite). Accordingly, the noise subspace can be properly estimated, even when only the
crossterm points are selected. However, since the crossterms change with time ¢, taking
both positive and negative values, summing them at different (¢, f) points yields small
smoothed values. Therefore, the t-f averaging is expected to yield degraded performance
in some cases. Performing JBD instead of t-f averaging avoids such risk.

Table I shows the DOA variance of signal d;(¢) obtained from 100 independent Monte-
Carlo runs of t-f MUSIC. Both JBD and t-f averaging are considered for four cases, namely,
(a) autoterm regions f(t) = fi(t) and f(¢) = f2(¢), (b) crossterm region f(t) = [f;(t) +
F2(8)]/2, (c) autoterm and crossterm regions f(t) = fi(t), f(t) = f2(t), and f(t) = [f1(¢) +
f2(t)]/2, and (d) autoterm region of the first signal, f(t) = fi(¢). Although both the
JBD and t-f averaging resolve the signals in all the four cases, it is evident that the JBD
outperforms the t-f averaging, particularly when the crossterm region is involved. Case
(d) in which only one of the two signals is selected has the best performance for both

methods of JBD and t-f averaging. An interesting observation is that, in case (b), where
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only the crossterm region is used, the JBD yields second best performance, whereas the

t-f averaging shows its worst performance.
TABLE I

VARIANCES OF DOA ESTIMATES

case (a) case (b) case (c) case (d)
JBD 0.156° 0.154° - 0.180° 0.121°
T-f averaging 0.179° 0.339° 0.199° 0.161°

VI. Spatial Ambiguity Functions

The spatial ambiguity function is proposed by Amin, Belouchrani, and Zhang [26]. The

discrete form spatial ambiguity function (SAF) matrix of a signal vector x(t) is defined as

D,x(0,7) = i x(u + 7/2)x" (u — 7/2)e% (D)

where 6 and 7 are the frequency-lag and the time-lag, respectively. In noise-free environ-

ment, x(t) = Ad(¢). In this case,
Dy (0, 7) = ADga(0,7)A". (2)

Equation (2) is similar to the formula that has been commonly used in blind source
separation and DOA estimation problems, relating the data correlation matrix to the
signal correlation matrix. Here, these matrices are replaced by the data SAF and signal
ambiguity function matrices, respectively. The two subspaces spanned by the principle
eigenvectors of Dy (6,7) and the columns of A are identical. This implies that array -
signal processing problems can be approached and solved based on the SAF.

By replacing the STFD matrix Dy (%, f) by the SAF matrix D, (0, 7), we can easily de-
rive the ambiguity-domain source separation methods and the ambiguity-domain MUSIC
(AD MUSIC) [26], following the same procedures described in IV and V.

The SAF's have the following two important offerings that distinguish them from other
array spatial functions.

1) The crossterms in between source signals.reside on the off-diagonal entries of matrix

Dgaa(8, 7), violating its diagonal structure, which is necessary to perform blind source
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separation. In the ambiguity domain, the signal autoterms are positioned near and at the
origin, making it easier to leave out crossterms from matrix construction.

2) The autoterms of all narrowband signals, regardless of their frequencies and phases,
fall on the time-lag axis (@ = 0), while those of the wideband signals fall on a different (6, 7)
region or spread over the entire ambiguity domain. Therefore, the SAF is a natural choice

for recovering and spatially localizing narrowband sources in broadband signal platforms.

VII. Sensor-Angle Distributions

In this section we use quadratic distributions to address the problem of characterizing
the power attributed to near-field scattering local to an array of sensors. The proposed
method is based on the quadratic sensor-angle distribution (SAD), previously called the
spatial Wigner distribution [27]. This distribution is a characterization of the power at
every angle for each sensor in Athe array. It is altogether different than the STFDs discussed
in the previous sections. These two types of distributions have different structures and
objectives. _

In the SAD, near-field sources have different angles for the various array sensors. The
SAD is a joint-variable distribution and a dual in sensor number and angle to Cohen’s
class of TFDs [1]. We use a known test source to illuminate the local scatterer distribution
we wish to characterize. Orthogonal subspace projection techniques are then applied to
the array data to suppress the direct propagation path from the test source so as to reveal
the less powerful local scatter. An example from the area of high-frequency surface wave
radar is provided for illustration‘.

A typical surface-wave radar receiving array may consist of between 8 and 64 sensors and
can be hundreds of meters or indeed more than 1km in total length. It is typically sited
on a coastal beach which may or may not provide a uniform transition from land to sea.
The coast may in fact be a bay in which case the land sea boundaries beyond either end of
the array may cause near-field scattering and distort the wave-front arriving at the array.
There may be other locally sited structures, such as buildings and fences, which can be
the source of local scatter (consider that the wavelength of the radar signal is between 30—
100m). This makes achieving very low sidelobe spatial beams with a classical beamformer

a difficult problem and can render the receiver system vulnerable to interference through
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beam sidelobes (possibly via skywave propagation).

The near-field scatter produced by these mechanisms are correlated with the desired
direct far-field radar return from targets (and clutter). This scatter is typically approx-
imately 20-40dB weaker than the direct signal. Without compensating for the effects
of local scatter, it is possible to achieve classical beam sidelobes of 30-35dB, however in
general the remaining components of the receiving system can sustain substantially higher
performance [28].

The effect of local scatter on beamforming must be mitigated in order for the radar
system to realize the inherent sidelobe capability as set by the radar equipment (as distinct
from the sensors) [28]. A first step to achieving this is to characterize the local scatter
distribution. A means of performing this characterization using techniques derived from
time-frequency analysis is the focus of the remaining sections of this chapter. ‘

A generalization of the spatial Wigner distribution introduced in [27] is provided and
combined with orthogonal projection techniques for detection, classification, and charac-
terization of near-field and far-field sources lying in the field of view of the multi-antenna

receiver.

A. Signal Model
A.1 Geometry

Consider a linear equi-spaced array of M sensors placed on a flat plane in a two dimen-
sional surface. Assume'that sensor position errors are negligible and the gain and phase
of all sensors and corresponding data acquisition equipment are accurately matched. It
is also assumed that the array is narrowband, i.e., the reciprocal of the bandwidth of
any signals received is large compared with the propagation delay across the array. The
wavelength of all sources received is A. Let the origin of a coordinate system be at the
mid-point of the array, with the sensors individually spaced by d regularly along the x-axis
and indexed i = 1,..., M from left to right. We assume that d < % | Boresight is along
the y-axis. |

A source is placed in the near-field (i.e. a circular wavefront impinges on the array)

at location r; meters from the origin and 6, degrees from boresight. For convenience




(although somewhat unconventionally) we have defined that angles are to be measured
clockwise from array boresight (the y-axis). For M odd there is a sensor at the origin,
whereas for M even the origin is midpoint between two sensors. The array geometrykand

the notations are shown in Fig. 10 for the case of M even.
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Fig. 10. Sensor array geometry and notations for linear array and a near-field source

The distance from the i** sensor to the source is given by

_A/‘_’:L_l.d]?—%s-d- [(i— 1) — M—f] -éin(es) 6]

rl, =12+ [(z— 1)-d—
-and the corresponding complex response at the it* sensor is

ulr,05) = = -exp (55 < 72s) 2)

assuming a normalized and equal gain for each sensor. The vector a(rs,6s) = [ay, - .., am]T

‘is the response of the complete array to the source at (rs, €;).

Likewise, the angle from the i** sensor to the source is

0 . cos™! [[(Z -1)- Mfl]de + 'rii - 7"3] _
St 2d[(i — 1) — 2=

|y

(3)

It is a characteristic of near-field sources that they are viewed at different angles by the
different sensors in the array.

Given sensor-angle measurements from any two or more sensors, it is possible to deter-
mine the range and bearing (r,, 8;) (with respect to the origin) of a source in the near-field.

This is, however, subject to identifiability requirements that each sensor has a different
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angle to the source. Given §;; and 6, ; with ¢ # j, one determines sensor to source ranges

rs; and 7, j respectively using

e cos|b; ;]
ros = [ =gl d- @
and
L. cos|f; ;
rsg =i —Jll-d- Eﬁl—[ﬁL——é—] (5)
S, $7

This requires that 6, ; — 6, ; # 0. The range and bearing with respect to the origin can be
determined relative to any of the individual sensors using the individual sensor range and
bearing. For example, for the j®* sensor, we use 7, ; and 6, ; according to

=it [P - d] 2oy [E - i) @

and
g, = " cos™ 1[0, ;] (7

s

A.2 Model

Our proposed source characterization technique requires one cooperative source with
complex envelope s} in the far-field of the array at known angle‘es. Steering vectors for
the far-field a(f) and near-field a(f,r) take on the standard form with 6 being the angle,
r denotes range [29].

Assume that the conditions on the test source and sensor array are such that the fol-

lowing signal model is appropriate
Zx = Ask + qx + D (8)

In this model, z, is the k™ snapshot of sensor data outputs (dimension M). The qyx
represents additive spatial and temporal colored noise produced in the environment and
ny represents additive white noise modeling the internal noise of the array of sensors
receiving system. . '

The matrix A can take on one of two forms, depending on whether the local scatterer
is best modeled as a collection of P discrete scatterers, or as a éingle spatially distributed
scatterer. For the case of P discrete scatterers

A = [a(6),a(6s, 1), .. a(6p, rp)] o
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In the above equation, the near-field scatterer i = 1,..., P is characterized by the angle
0; and range r;. For a distributed scatterer with scatter amplitude f[a(6,r)] contained in

the near-field azimuth and range set €2,

A= [a(as), /0 o Tlale, r)]d()dr] . (10)

Likewise, the signal vector six can be constructed in two ways, depending on whether

the near-field scatterers are best modeled as discrete or continuous. For the discrete case,
T
P
Sk = [si,s}(,...,sk] (11)

where the test source complex amplitude is given by s? and the complex amplitude of the

ith of P discrete scatterers is denoted as si. In the continuous scatterer case,
T
Sk = [si,sk] . (12)

The s§ and si and s; may be uncorrelated, correlated, or coherent for each case respec-
tively.

The spatial covariance matrix E[zzH] is

R =ASA¥" + Q+02L (13)
Let the elements of S be p;;. We ensure that the cooperative test source has sufficient signal

to noise ratio (generally greater than 50dB) to perform our measurement by requiring that

_ P11
psnr = -————-(0_2 n tI‘[Q]) >> 1. (14)

It is also expected that the direct far-field source power will be substantially greater than

the total near-field power (by 20-40dB)

Perf = P11
snf Zf:z PY

>> 1. (15)

A.3 Background

Breed and Posch [27] introduced the spatial Wigner distribution as a tool for deter-
mining the range and angle of a near-field source. They exploited the property that the
phase front of a wave emanating from a source in the near-field of an array has an approx-

imately quadratic phase law, or equivalently an approximately linear spatial frequency
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law. They then determined source location by determining the parameters governing the
linear frequency law as represented by the Wigner distribution applied to the spatial sig-
nal. The true propagating wave phase front is in fact spherical and is only approximately
quadratic for near-field sources some distance frbm the array. The method proposed in [27]
breaks down for sources close to the array. Swindlehurst and Kailath [30] examined the
applicability of the quadratic-spherical approximation and apply a parametric high resolu-
tion technique to determine the linear frequency law paraméters (and hence the near-field
source position). However, it can be seen from equations (4) through (7) that it is possible
to determine the source position without invoking the quadratic phase approximation to
the spherical phase front.

There is a substantial body of literature concerned with processing spatial signals re-
ceived by an array of sensors from sources in the near-field of the array. It is mostly
concerned with techniques for estimating the angle and range of the source. For example,
both subspace and maximum likelihood algorithms are derived in [31]. Subsequently we
will present an example showing near-field characterization using both the sensor-angle
distribution (discussed next) and the near-field MUSIC, as developed in [31].

Several authors have proposed methods for determining the angle of distributed sources
located in the far-field of an array [32]. These techniques address the effect of scatter local
to a transmitter in the far-field and not for scatter that is sufﬁcientiy local to the receiving

system to be in the near-field of the array.

B. Sensor-Angle Distributions

Our method extends the spatial Wigner distribution introduced by Breed and Posch. To
“avoid confusion it has been necessary to change the name to reflect the generalization to
all members of Cohen’s class of quadratic distributions [1]. While the title “spatial Wigner
distribution” is informative, retaining the name “spatial time-frequency distribution” for
the remaining members of Cohen’s class applied to spatial signals does not correctly de-
scribe the distribution we are interested in, and will be confused with STFD discussed
in earlier sections of this chapter. Therefore, in this work we have renamed the class of
quadratic distributions applied to spatial signals to be sensor-angle distributions (SAD).

The corresponding spectra are called sensor-angle spectra (SAS).
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The Cohen’s class SAD for the k™ snapshot is a distribution of the angle of sources

impinging on the array at each sensor.

Tk(i,0;zx) = i i o(v,Dz(i+v + l)zi(i + v — 1)e 4! - (16)

v=—00l=—00

where 7 and 6 are the sensor index and angle respectively. The kernel ¢(v,!) characterizes
the distribution and is a function of sensor position and sensor lag. All the standard kernel
designs applied in the fime—frequency literature may be used with the SAD.

The sensor-angle spectrum (SAS) is the power (not energy or energy density) distribu-

tion of the sources impinging on the array. The SAS is given by
T5(i, 6; 2) = E[Tk(i, 0; z:)] (17)

where an estimate for temporally stationary sources is given by

R 1 N-1
T5(i,0;2) = N > Tucli, 05 24) (18)
k=0

for N snapshots.

C. Characterizing Local Scatter

The objective is to use data received by the array from a test source in the far-field that
illuminates the local near-field scatterer distribution and to visualize and characterize this
scatterer distribution using the SAS. We expect the test signal to be substantially more
powerful than the local scatter we wish to characterize (see (15)). Subspace projection is
applied to the array énapshots to remove the dominant far-field component and allow a
clear depiction of the near-field source in the sensor-angle (s-a) domain.

In (16) and (17), the data snaphot 2 is repiaced by Pz where P?° is the orthogonal

projection operator formed from the far-field test source steering vector a(6%) as
P — 1— a(6%)[a¥(6%)a(6%)] " aP (65). (19)
Therefore, we compute the modified SAS
TS(i,0, P*°, 2). (20)

In some applications, a single test angle will provide sufficient characterization using
(20) while in other applications, two or several test angles will be required, in which case

68 is scanned over the required domain of angles for the test source.
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D. Simulations and Examples

The following example is used to demonstrate the proposed approach for near scattering
characterizations. Consider a 32 sensor linear equi-spaced array operating at a carrier
frequency of 6.41MHz and with 15m sensor spacing. The local scatterer distribution
comprises a point scatterer in the near-field at a range of 400m and bearing of 30 degrees
in front of the.array (the array has total length 465m). Assume the test source is temporally
stationary and located at 20 degrees angle with respect to boresight. The test source is
coherent with and 20dB stronger than the scattered source. In this example we have used
the alias-free Wigner distribution [33]. Of course others members of Cohen’s class may
also be used.

Figure 11 shows the SAD for the received data. The SAD is dominated by the substan-
tially more powerful far-field test source and there is no clear indication of any additional
scattering. The far-field source has the same angle for every sensor, and therefore, depicts
a horizontal signature in the s-a domain. In Fig. 12 we have applied the orthogonal projec-
tion operator and computed the SAD for 12 zy. The SAD now clearly shows the presence
of near-field local scatter. The location of the near-field source may be determined using

equations (4)—(7).

alias--tree Wigner dist)

~

0s

spatial fraquency [sin(6)}
-]

&
@

-200 -150 -100 -50 o 50 100 150 200
‘sensor position wrt array center {m)

Fig. 11. SAD for the received data zx. The far-field test source dominates the SAD characterization.

_ S -
The beampatterns for the cases of z, and P? z, are shown in Fig. 13. The presence
of near-field scatterers cannot be confirmed as compared with alternative explanations for

the distorted beampatterns, such as poor array calibration.
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Sensor-angle distribution (afias—froe Wigner dist)
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Fig. 12. SAD for the received data P”Szk. With the direct propagation path from the far-field test signal
g

removed by the orthogonal projection operator the local scatterer spectrum is revealed.
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Fig. 13. Beampattern for zx (—) and P? z, (--). Without the sensor-angle characterization it is not
possible to identify perturbations from the ideal test source beampattern as being due to near-field

scatter.

The projection approach has also been applied to real data collected from a 16 sensor
HF receiving array. An array calibration source was transmitted from the far-field of the
array at boresight. The sensor angle distribqtion is shown in Fig. 14 and is dominafed
by the calibration source. Following calibration of the array using the calibration source,
the received and calibrated boresight source is removed using orthogonal projection. The
sensor angle distribution of the residual is shown in Fig. 15. No discrete near-field scatterers
are apparent, however there is a concentration in the SAD in the upper left region of the
distribution. This indicates that there is some asymmetric local scattering near the array.

A second example is used to contrast the SAD with existing techniques for near-field
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Fig. 14. SAD for the real received data. The far-field calibration source at boresight dominates the SAD
characterization. '
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Fig. 15. SAD for the real received data with the direct propagation path from the far-field calibration
source removed by orthogonal projection operator. The local scatterer sensor-angle distribution is

revealed.

sources characterization. In this case, we have chosen to compare with an implementation
of near-field MUSIC as described by [31]. We consider an ideal computer generated case
and an equivalent case where the data has been collected using a real HF radar array.
Consider an ideal case with a single source placed at range 80m and bearing 10.5 degrees.
Assume a 16 sensor array, that source signal to noise power ratio is high and 102 array data
snapshots are available (generated using computer). Figs. 16 and 17 respectively, show
the near-field MUSIC diagram and the SAS, both computed using all 102 data snapshots.
The source is well localized using MUSIC, and there is a characteristic structure in the

SAS showing sensor-angle for each sensor in the array.
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Fig. 16. Near-field MUSIC diagram for an ideal source at range 80m and bearing 10.5 degrees.
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Fig. 17. sensor-angle spectrum for an ideal source at range 80m and bearing 10.5 degrees.

We have repeated the analysis, but this time used 102 data snapshots collected from the
HF radar receiving array. The near-field source was approximately 80m from the array
mid-point at an angle of approximately 10 degrees. In this case the source was behind
the array. The exact location is not known precisely. Figs. 18 and 19 show the near-field
MUSIC diagram and the SAS respectively. Imprecise array calibration has smeared the
localization in the MUSIC diagram while the structure in the SAS is preserved.

VIII. Conclusion

We have presented two different new perspectives of time-frequency distributions. One
perspective is driven by direction finding and blind source separation problems, whereas

‘the other stems from the need to characterize near-field sources or reflectors. The fun-
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Fig. 18. Near-field MUSIC diagram for a real source placed at approximately range 80m and bearing
10.5 degrees.
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Fig. 19. sensor-angle spectrum for a real source placed at approximately range 80m and bearing 10.5

degrees.

damental offering of quadratic distributions in both cases is the ability to discriminate
between the sources based on the joint-variable signatures of their respective waveforms.
This allows the enhancement of signal-to-noise ratio (SNR) as well as the consideration
of only the sources of interest, and subsequently improve the estimation of the source
positions and waveforms.

The first six sections presented the general framework of spatial time-frequency distri-
butions (STFDs). The advantages of a STFD matrix over the covariance matrix-based
approach to array processing are the SNR enhancement and the robustness of the eigen-

structure to noise. A variety of methods have been introduced for both blind source
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separation and direction finding applications using STFDs. The first class of source sepa-
ration methods are based on pre-whitening and the recovery of a unitary matrix. Unlike
similar methods based on second-order statistics, which cannot separate signals with the
same spectra, the STFD-based method can separate nonstationary signals with identical
spectra when they have different time-frequency signatures. The SNR enhancement and
signal localization properties in the time-frequency domain can substantially improve the
source separation performance. The second class of source separation methods are based
on array averaging of the time-frequency distribution, signal synthesis, and waveform re-
covery using the minimum mean square error criterion. For direction finding, both the
MUSIC and the maximum likelihood methods have‘ been extended and modified to incor-
porate the STFDs. The performance improvement, evident by both the analytical and
simulation results, is most signiﬁcant when the input SNR of source arrivals is low, and/or
when the sources are closely spaced.

In the second pdrt of the chapter, we have used the time-frequency distribution of the
spatial signal received by an array to characterize sources based on their angle at each
sensor. This sensor-angle distribution is a tool for characterizing near-field scatter local
to the receiving array. The method uses a test source in the far-field to illuminate the
local scatterer distribution. An orthogonal projection operator derived from the steering
vector for the far-field test source is used to exclude the direct propagation path from
the test source in the characterization. As part of the characterization we exploit the
spatial Wigner distribution although we have renamed it the sensor-angle distribution to
avoid confusion with a similarly named but differently defined STFD discussed in the first
part of the chapter. We have shown the application of the method using simulation and
for real data collected using an HF radar receiving array. Additional simulations and
real data results contrast the SAD characterization with that of a conventional near-field

localization technique (in this case near-field MUSIC).
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Interference Suppression in Spread Spectrum

Communication Systems

 Moeness G. Amin and Yimin Zhang

Villanova University, PA

Abstract

This chapter discusses interference excision techniques in spread spectrum communi-
cations systems. Both stationary and nonstationary interferers are considered. Sinusoidal,
auto-regressive, digital communication, and polynomial phase interference signals are ef-
fectively suppressed by different excision methods; each is suitable for one or more types
of interferers. Time-, frequency-, and time-frequency domain methods for analysis and
estimation of the interference parameters are summarized. Domains other than time and
frequency, such as the Gabor-domain, the Wavelet-domain , and quadratic time-frequency
.signal representations, are approprizite for non-traditioﬁal smart jamming in which the
interference parameters are highly dependent on time. Excision methods can be linéar,
bilinear, or nonlinear with performance dependent on the interference power relative to
the desired signal and noise. In some cases, the slight performance enhancement offered
by bilinear and nonlinear methods may not properly justify the increase in the algorithm
complexity. The BER and receiver SINR expressions and curves are presented in this

chapter for some of the key interference excision techniques.
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I. Introduction

Suppression of correlated interference is an important aspect of modern broadband com-
munication platforms. For wireless communications, in addition to the presence of benign
interferers, relatively narrowband cellular systems, employing time division multiple ac-
cess (TDMA) or advanced mobile phone system (AMPS) may coexist within the same

~frequency band of the broadband code division multiple access (CDMA) systems. Hostile
jamming is certainly a significant issue in military communication systems. Global posi-
tioning system (GPS) receivers potentially experience a mixture of both narrowband and
wideband interference, both intentionally and unintentionaliy [1].

One of the fundamental applications of spread spectrum (SS) communication systems is
* its inherent capability of interference suppression. SS systems are implicitly able to provide
a certain degree of protection against intentional or unintentional interferers. However,
in some cases, the interference might be much stronger than the SS signal, and the limi-
tations on the spectrum bandwidth render the processing gain insufficient to decode the
useful signal reliably. For this reason, signal processing techniques are frequently used
in conjunction with the SS receiver to augment the processing gain, permitting greater
interference protection without an increase in the bandwidth. Although much of the Work
in this area has been motivated by the applications of SS as an anti-jamming method in
military communications, it is equally applicable in commercial communication systems
where SS systems and narrowband communication systems may share the same frequency
bands.

This article covers both the direct-sequence spread spectrum (DS/SS) and frequency
vhopping (FH) communication systems, but the main focus is on the DS/SS communica-
tion systems. For DS/SS communication systems, two types of interference signals are
~ considered, namely, narrowband interference (NBI) and nonstationary interference, such
as instantanously narrowband interference (INBI).

The early work on narrowband interference rejection techniques in spread spectrum
communications has been reviewed comprehensively by Milstein in [2]. Milstein discusses
in depth two classes of rejection schemes: 1) those based on least-mean square (LMS)

estimation techniques, and 2) those based on transform domain processing structures. The
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improvement achieved by these techniques is subject to the constraint that the interference
be relatively narrowband with respect to the DS/SS signal waveform. Poor and Rusch {3]
have given an overview of NBI suppression in SS with the focus on CDMA communications.
They categorize CDMA interference suppression by linear techniques, nonlinear estimation
techniques, and multiuser detection techniques (multiuser detection is outside the scope
of this article). Laster and Reed [4] have provided a comprehensive review of interference
rejection techniques in digital wireless communications, with the focus on advances not
covered by the previous review articles.

Interference suppression techniques for nonstationary signals, such as INBI, have been
summarized by Amin and Akansu [5]. The ideas behind NBI suppression techniques can
be extended to account for the nonstationary nature of the interference. For time-domain
processing, time-varying notch filters and subspace projection techniques can be used to
mitigate interferers characterized by their instantaneous frequencies and instantaneous
bandwidths. Interference suppression is achieved using linear and bilinear transforms,
where the time-frequency domain and wavelet/Gabor domain are typically considered.
Several methods are available to synthesize the nonstationary interference waveform from
the time-frequency domain and subtract it from the received signal.

Interference rejection for FH is not as well developed as interference rejection for DS or
for CDMA. In FH systems, the fast FH (FFH) is of most interest,.and the modulation most
commonly used in FH is frequency-shift keying (FSK). Two types of interference waveforms
can be categorized, namely, partial-band interference (PBI) and multitone interference
(MTT). Typically, interference suppression techrﬁques for FH communication systems often
employ a whitening or clipping stage to reject interference, and then combined by diversity

techniques.

II. Signal Model

The received waveform consists of a binary phase-shift-keying (BPSK) DS/SS signal
s(t), an interfering signal u(t), and thermal noise b(t). Without loss of generality, we
consider the single-interferer case, and additive Gaussian white noise (AGWN) that is

uncorrelated with both the DS/SS and the interference signals. The input to the receiver,
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z(t), is given by
z(t) = s(t) + u(t) + b(2). (1)

The DS/SS signal can be expressed as
s(t) = Z d(D)p(t — IT,), (2)
l=—00 )

where T, is the chip duration, p(¢) is the shaping waveform,

d(l) = s(n)c(n, 1) (3)

is the chip sequence, s(n) € [—1,+1] is the nth symbol, and ¢(n,!) € [-1,+1] is a pseudo-
noise (PN) sequence used as the spreading code for the nth symbol. The PN sequence can
be either periodic andi aperiodic. Different types of interference signals are considered.
For discrete-time filter implementations, signals are sampled at the rate 1/T. Typically,
the sampling interval T is equal to the chip duration 7.. The input to the receiver, after
sampling, becomes '
z[n] = z(nT). (4)
The samples of the DS/SS signal, interference, and noise, can be defined accordingly as

s[n], u[n], and b[n], respectively.

III. Narrowband Interference Suppression

Interference suppression techniques for DS/SS systems are numerous. In particular,
much literature ex1sts on the adaptive notch filtering as it relates to suppress NBI on a
wideband DS/SS signal. Synthems/subtractlon is another well-established technique for
sinusoidal interference suppression. Other techniques include nonlinear adaptive filtering

and multiuser detection techniques.

A. Adaptive Notch Filtering

The basic idea in employing an adaptive notch filter is to flatten the filter input spec-
trum. An SS signal tends to have a uniform wide spectrum and is affected little by the
filtering process, whereas the NBI is characterized by spectral spikes and frequency regions
of high concentrated power. The adaptive notch filter places notches at the frequency lo-

cation of the NBI to bring the interference level to the level of the SS signal. At least two
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main approaches exist for constructing an adaptive notch filter: (1) estimation/subtraction

type filters and (2) transform-domain processing structures.

Estimation/Subtraction Type Filters

If the interference is relatively narrowband compared with the bandwidth of the spread
spectrum waveform, then the technique of interference cancellation by the use of notch
filters often results in a large improvement in system performance. This techniqﬁe, de-
scribed in many references including [6], [7], [8], [9], uses a tapped delay line to implement
the prediction-error filter (Wiener filter [10]). Since both the DS signal and the thermal
noise are wideband processes, their future values cannot be readily predicted from their
past values. On the other hand, the interference, being a narrow-band process, can indeed
have its current and future values predicted from past values. Hence, the current value,
once predicted, can be subtracted from the incoming signal, leaving an interference-free
waveform comprised primarily of the DS signal and the thermal noise. A general diagram
of this technique is depicted in Fig. 1. Both ohe—sided and two-sided transversal filters
can be used for this purpose. When two-sided filters are used, the estimation of current
interference value is based on both past and future values of the interference. Consider a

single-sided filter as shown in Fig. 2. Define an N-dimensional vector x[n], denoted as
x[n] = (afn — 1], -+, zln — N))7, (5)

where the superscript T' denotes transpose of a vector or a matrix. The DS/SS signal,
interference, and noise vectors can be defined similarly as s[n}, u[n], b[n], respectively. We

also define the corresponding weight vector w as
w = [wy, -, wy]" . (6)
Hence, the output sample of the filter is
ytn] = zfn] — wx[n]. (7)

The mean square value E[y?[n]], representing the output average power, is given by

E (y2{n]) =F (3:2[n]) — 2w E (z]n]x[n]) + wTE (x[n]xT[n]) w

AE (xz[n]) —2wTp 4+ wRw, | (8)
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where p = E (z[n]x[n]) is the correlation vector between z[n] and x[n], and
R = E (x[n)x"[n]) (9)

is the covariance matrix of x[n]. It is noted that, when the PN sequence is sufficiently
long, the PN signal samples at different taps are approximately uncorrelated. On the
other hand, samples of the narrowband interference at different taps has high correlations.

Since the DS/SS signal, interference, and thermal noise are mutually uncorrelated, then,

p = E(z[n]x[n])
= E{(s[n) + uln] + bn]) (sln] + ufn] + bln])}
— B (ufnluln). 1)

Minimizing the output power E[y?[n]] yields the following well-known Wiener-Hopf so-

lution for the optimum weight vector wp,
Wopt = R !p. (11)

The cost of notch filtering is the introduction of some distortion into the SS signal. Such
distortion results in power loss of the desired DS/SS signal as well as the introduction of
self-noise. Both effects become negligible when the processing gain is sufficiently large.

Note that when precise statistical knowledge of the interference cannot be assumed,
adaptive filtering can be used to update the tap weights. There are a variety of adaptive
algorithms and receiver structures [7], [11], [12], [10]. The optimum Wiener-Hopf filter can
be implemented by using direct matrix inversion (DMI) or recursive adaptation methods.
For the DMI method, the covariance matrix R and p are estimated at time n by using

‘most recent N, data samples, i.e.,

Rin] = Tvlj fi; x[n — xT[n — 1] (12)
and N'_l
Blnl = > afn ~1<ln (13)

The least mean square (LMS) algorithm is a simple and stable method to implement

an iterative solution to the Wiener-Hopf equation without making use of any a prior:
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statistical information about the received signal. Using the instantaneous estimates of the
covariance matrix and cross-correlation vector of Eqns. (9) and (10), the LMS algorithm
can be expressed as
win +1] = win] + uy[nxin), (14)
where w{n] is the filter weight vector of elements w[n],! = 1,2,---, N, x[n] is the vector
that includes the data within the filter, and y[n] is the output, all at the nth adaptation,
and u is a parameter that determines the rate of convergence of the algorithm. It is noted
that in most applications of the LMS algorithm, an external reference waveform is néeded
in order to correctly adjust the tap weights. However, in this pérticular application, the
signal on the reference tap z[n] serves as the external reference. |
The drawback of LMS algorithm is its slow convergence. To improve the convergence
performance, techniques including self—orthogonalizing LMS, recursive least squares (RLS),

and lattice structure can be used [13], [10].

SINR and BER Analysis

The output signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER) are
two important measures for communication quality and the performance enhancement
using the signal processing techniques. '

To derive the output SINR, we rewrite the filter output as ?

y[n] = gw,x[n -1 = Zwl(c[n‘— Il +uln — 1]+ b[n —1]). (15)

=0
where wo = 1. The signal {y[n]} is then fed to the PN correlator. Denote L as the number

of chips per information bit. Then the output of the PN correlator, which is the decision

variable for recovering the binary information, is expressed as

r = Z_:l y[nle[n] = 2—31 c|n] gwl(c[n —ll+uln—=1]+bn-1)) |
= 21 c*[n] + 21 c[n] ; wieln — 1] + 2—:1 c[n] Z% wi(uln — 1] +b[n —1])
=L+ ; c[n] ?_:1 wieln — 1] + S:: z-zo cfnlwuln — 1] + 21 gc[n]wlb[n - 1.

1To keep the notation simple, we have used in (15) the same symbol w; as in (6). The two sets of weights,

however, differ in sign.
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(16)

The first term on the right-hand side of (16) represents the desired signal component, the
second term amounts to the self-noise caused by the dispersive characteristic of the filter,
and the third term is the residual narrowband interference escaping the excision process
and appearing at the output of the PN correlator. The last term in (16) is the additive
noise component.

The mean value of 7 is

Er)=1L 17
and the variance is [7]
N N
var(r )Aa —LZwl—I-LZanw[pn—l +La2Zw , (18)
n=11=0 .

where 02 = E(b%[n]) is the AGWN variance and
pln = 1] = F (ulklulk + n = 1]).

The three terms of the right-hand side of (18) represent the mean square values caused by
the self-noise, residual narrowband interference, and noise, respectively.

The output SINR is defined as the ratio of the square of the mean to the variance. Thus,

2
SINR, = fa r((:)) L — (19)
Zw¢+22wnw¢pn—l Z
n=1[0=0 =0

Note that, if there is no interference suppression filter, w; = 1 for | = 0 and zero otherwise.

Therefore, the corresponding output SINR is

L

SINR,, = ——.
p[0] + o2

(20)

If we assume that the‘ self-noise, residual interference, and hoise components at the
output of correlator is Gaussian, then the BER can be evaluated in the same manner as
the conventional BPSK corrupted only by AWGN. Under such assumption, the BER is
given by »
P,=P(r <0) = f DL eeppneg, Q (\/S_II\TE)) , (21)

-0 Y/ 2no
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where

‘ Qz) = \/—12—_7; [ i (22)

is the @-function [13].
Transform-Domain Processing Structures

An alternative to time-domain excision as described in the preceding section, is to trans-
form the received signal to the frequency domain and perform the excision in that domain.
Clipping and gating methods can then be applied on those transform bins contaminated
by the interference.

Surface acoustic wave (SAW) device technology can be used to produce the continuous-
time Fourier transform of the received waveform [14], [15]. The discrete Fourier transform
(DFT), with FFT implementations, is commonly applied for time-sampled signals [16].
Adaptive subband transforms generalize transform-domain-processing [17], {18], and can
yield uncorrelated transform coefficients. |

The interference-suppressed signal based on a block transform can be written as
xs[n] = BEAx]n|, (23)

where x([n] is the received input vector, A and B are the forward transform matrix and
inverse transformn matrix, respectively, and E is a diagonal matrix with each diagonal
element acting as a weight multiplied to the input signal at each transform bin. The
weights can be controlled by different schemes. Two commoﬁly used methods are either
to set the weights binary (i.e., a weight is either one or zero) or to adjust the weights
adaptively. In applying the first method, powerful NBI is detected by observing the
envelope of the spectral waveform. Substantial interference suppression can be achieved
by multiplying the input signal with a weight that is set to zero when the output of the
envelope detector at a transform bin exceeds a predetermined level. Fig. 3 illustrates
the concept of transform-domain notch filtering. Adaptive algorithms, sucﬁ as LMS and
RLS, can be used to determine the excision weights adaptively. The application of these
algorithms, however, requires a reference signal that is correlated with the DS/SS signal.

When the binary weights are used, the transform-domain processing technique may suf-

fer from the interference sidelobes. With block transforms, the energy in the narrowband
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interference, which initially occupies a small region of the frequency spectrum, is dispersed
in a relatively large spectral region. In this case, excision of a large frequency band may
become necessary to effectively remove the interference power from most transform bins.
The frequency dispersion of the interference can be nearly eliminated by weighting the
received signal in the time domain with a nonrectangular weighting function prior to eval-
uating the transform. In doing so, the levels of the side lobes of the interference frequency
spectrum are attenuated at the expense of broadening the main lobe [19], [15]. In this
case, the conventional matched filter is no longer optimal. Using adapted demodulation
accordingly can improve the receiver performance [20].

It is important to point out that for transform-domain processing, symbol detection can
be performed in either the time or the transform domain. In the later case, filtering and
correlation operations can be combined in one step. |

The BER expression for transform-domain interference excision can be easily formulated
using the Gaussian tail probability or the Q)-function. The residual filtered and despreaded
interference is treated as an equivalent AWGN source. Typically, a uniform interference
phase distribution is assumed. When transform-domain filtering is considered, the BER

depends on both the excision coefficients and the error misadjustment.

B. Synthesis/Subtraction for Sinusoidal Interference

In this section, we view the interference signal as the one that is corrupted by the

additive noise and the DS/SS signal.

Figenanalysis Approaches

In a typical situation, the power level of the DS/SS signal is negligible relative to the
power level of the interference and, in the most case, relative to the additive noise. For
high interference-to-noise ratio (INR), the correlation matrix of the received signal vector
consists of a limited number of large eigenvalues contributed mainly by the narrowband
interference, and a large number of small and almost equal eigenvalues contributed by
the DS/SS signal and noise. The eigenanalysis interference canceller is designed with a

weight vector orthogonal to the eigenvectors corresponding to the large eigenvalues [21].
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* The eigendecomposition of the correlation matrix, defined in (9), results in

%, 071[UX
R =UXU¥ = [U,Un]{ - } {UH}’ (24)

where the columns of U, span the interference subspace, whereas the colurhns of U,, span
the signal with noise subspace, and ¥, and X, are diagonal matrices whose elements are
the eigenvalues of R. For real sinusoidal interference, the number of dimensions of the
interference subspace is twice the number of interfering tones. |

The projection of the signal vector on the noise subspace results in interference sup-

pressed data sequence,
&[n] = U, Ufx[n] = (1- U, UT) x[n), (25)

where I is the identity matrix.
The subspace projection approach can also be performed using the singular value de-

composition (SVD) for the sample data matrix [22].

C. Nonlinear Estimation Technigques

The commonly applied predictor/subtracter technique for narrowband interference sup-
pression previously discussed is optimum in the minimum mean square error (MMSE)
sense when trying to predict a Gaussian autoregressive process in the presence of AWGN.
If the prediction is done in a non-Gaussian environment, as in the case of SS signals,
linear prediction methods will no longer be optimum. In [3], depending on whether the

statistics of the AR process is known or unknown, time-recursive and data-adaptive non-

* linear filters with soft decision feedback are used to estimate the SS signal. For known

interference statistics, the interference suppression problem is cast in state space for use
with Kalman-Bucy and approximate conditional mean (ACM) filters. A fixed length LMS
transversal filter, on the other hand, is used when there is no a priori statistical informa-
tion is provided. With the same AR model, both schemes are shown to achieve similar

performance, which is an improvement over the Gaussian assumed environment.

D. Multiuser Detection Techniques

A narrowband interference could be a digital communication signal with a data rate

much lower than the spread spectrum chip rate. This is typically the case when spread
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spectrum signals are used in services overlaying on existing frequency band occupants. In

this case, the narrowband interference is a strong communication signal that interferes with
commercial DS/SS communication systems. This type of interferers is poorly modeled as
either a sinusoid or an autoregressive process. Because of the similarity of the spread
spectrum signal and the digital interference, techniques from multi-user detection theory
are applied to decode the SS user signal and Simultaneously suppressing the interferer [23].

In order to apply methods from multiuser detection, the single narrowband interferer is
treated as a collection of m spread spectrum users, where m is a function of the relative
data rates of the true SS signal and the interference. That is, m bits of the narrowband
user occur for each bit of the SS user. As shown in Fig. 4, and using square waves for
illustrations, each narrowband user’s bit can be thought as a signal arising from a virtual
user having a signature sequence with only one non-zero entry. The virtual users are
orthogonal, but correlated, with-the SS user.

The optimum receiver ifnplementing the maximum likelihood (ML) detector has é com-
plexity that is exponential in the number of virtual users, m. To overcome such complexity,
the optimal linear detector and decorrelating detector are applied. While the first requires
knowledge of relative energies of both the narrowband interferer and the SS user and max-
imizes the receiver asymptotic efficiency, the latter is independent of the receiver energies
and achieves the near-far resistance of the ML detector. The asymptotic efficiency is the
limit of the receiver efficiency as the AWGN goes to zero. It characterizes the detector
performance when the dominant source of corruption is the narrowband interferer rather
than the AWGN. The receiver efficiency, on the other hand, quantifies the SS user energy
that would achieve the same probability of error in a system with the same AWGN and
no other users. The input of both detectors is the output of the filter bank and consists
of filters matched to the spreading codes of each active user, as depicted in Fig. 5.

The following expressions are derived in reference [23] for the probability of errors of four
different detectors. In all cases, it is assumed that the narrowband signal is synchronized

with the SS signal.

" Conventional Detector (CD), where the received signal is sent directly to a single filter

matched to the spreading code. The output of the filter is then compared to a threshold
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to yield the spread spectrum bit estimate. This detector is only optimum in the case of a

single spread spectrum user in AWGN. The BER is given by

- L% (‘/@(I—ap qi)) (26)

On

where a = \/U’—IE, w, is the received energy of the narrowband interference, w; is the
received energy of the SS user (including the process gain), p is the vector formed by the
cross correlation between the narrowband interference waveform and the DS/SS signal
waveform, q is the narrowband interference data bits, and {q’} is an ordering of t.he 2m
possible values of the vector of narrowband bits.

Decorrelating Detector (DD), where the last row of the inverse of the cross-correlation
matrix of the m + 1 users is used to multiply the output of the m + 1 matched filters,
followed by a threshold comparison for bit estimate. The BER is given by

Pdsz(sz(l_pr)). @)

On

Optimum Linear Detector (OLD), where the user energies are used to maximize the

asymptotic efficiency. The BER is given by

Pa= o 3 @ L2 (Lt avp - afen” + §7)a) (28)
d= 5m
° P On \/ 1+ 2avTp + a?2vTv
where the ith element of vector v is given by
1 —pi >«
v; = -1 pi> o v : (29)

—p;fo.  otherwise.

Ideal Predictor/Subtracter (IPS), which is similar to the transversal filter excision tech-
niques described in Section III-A. Perfect knowledge of the narrowband signal is assumed.
Further, it is assume that perfect prediction fo the sample interior to the narrowband bit
is achieved and the only error occurs when predicting at bit transitions. The expressions
were derived in [23], where one detector assumes zero bit estimate of the narrowband bit

at the transition and the other detector takes this estimate to be random. For the former
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detector,

1 2m-t fi; (1 - apTqi
=0 On
and for the other detector
1205 2t (wg (1 - apT(qf - &)
Pips’*‘ﬁZQ_mEQ ( ~ ) . (31)
i=0 =0 ‘ n

where &’ is the estimate of q’, and P, defined only over the chip interval emcompassing
a narrowband bit transition, is the vector formed by the cross correlation between the
narrowband interference and the DS/SS signal.

The performance of the optimum linear and decorrelator detectors, representing the
multi-user detection techniques, is shown in reference [23] to be similar for different inter-
ference power and bandwidth. Both techniques significantly outperform the conventional
detector and the predictor/subtracter, when using a 7 tap LMS prediction filter. The im-
provement in BER is more pronounced for stronger and less narrowband interferers. The
advantage of the decorrelator detector over the other conventional and adaptive prediction
filters remains unchanged when considering asynchronous interference.

Fig. 6 depicts the BER comparison between the conventional detector, decorrelating
detector, optimum linear detector, and ideal predictor/subtracter with m=2 and L = 63.
This figure is in agreement with the performance figures, shown in [23], and conforms with
the same observations stated above. It is clear from Fig. 6 that the matched filter performs
well for weak interferers. The optimum linear detector offers slight improvement over
the decorrelating detector. The ideal predictor/subtracter outperforms the decorrelating
detector for moderate values of interference power. It is important to note, however, that

the actual predictor/subtracter performance will have much greater error probability [23].

E. Minimum Mean-Square Error Algorithm

The minimum mean-square error (MMSE) algorithm, originally proposed for suppress-
ing multiple-access interference in DS/CDMA multi-user detection problems, has been
employed for narrowband interference mitigation [24] Using the signal-to-interference ra-

“ tio and its upper bounds as a performance measure, the MMSE has been compared with
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linear and nonlinear techniques in suppressing three types of interference, namely single-
tone and multi-tone signals, autoregressive process, and digital communications signal
with a data rate much lower than the spread spectrum chip rate. The linear estima-
tors include the conventional matched filter detector, the predictor/subtracter, and the
interpolator /subtracter techniques. The latter is based on using a fixed number of past
and future samples [24]. The nonlinear techniques include those based on prediction and
interpolation. It is shown that the MMSE detector completely suppresses the digital in-
terference, irrespective of its power, and provides similar performance to the nonlinear

interpolator /subtracter method, when dealing with AR type of interference.

IV. Nonstationary Interference Suppression

The interference excision techniques discussed in the previoﬁs sections deal with sta-
tionary or quasi-stationary environment. The interference frequency signature, or charac-
teristics, is assumed fixed or slowly time-varying. None of these techniques is capable of
effectively incorporating the suddenly changing or evolutionary rapidly time-varying na-
ture of the frequency characteristics of the interference. These techniques all suffer from
their lack of intelligence about interference behavior in the joint time-frequency (t-f) do-
main and therefore are limited in their results and their applicability. For the time-varying
interference depicted in Fig. 7, frequency-domain methods remove the frequency band A f
and ignore the fact that only few frequency bins are contaminated by the interference at
a given time. Dually, time domain excision techniques, through gating or clipping the
interference over At, do not account for the cases where only few time samples are con-
taminated by the interference for a given frequency. Applying either method will indeed
eliminate the interference but at the cost of unnecessarily reducing the desired signal en-
ergy. Adaptive excision methods might be able to track and remove the nonstationary
interference, but would fail if the interference is highly nonlinéar FM or linear FM, as in
Fig. 7, with high sweep rates. Further, the adaptive filtering length or block transform
length trades off the temporal and the spectral resolutions of the interference. Increasing
the step size parameter increases the filter output errors at convergence, and causes an
unstable estimate of the interference waveform.

The above example clearly demonstrates that nonstationary interferers, which have
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model parameters that rapidly change with time, are particularly troublesome due to the
inability of single-domain mitigation algorithms to adequately ameliorate their effects. In
this challenging situation, and others like it, joint t-f techniques can provide significant
performance gains, since the instantaneous frequency (IF), the instantaneous bandwidth,
and the energy measurement, in addition to myriad other parameters, are available. The
objective is then to estimate the t-f signature of the received data using t-f analysis,
attenuating the received signal in those t-f regions that contain strong interference. This
is depicted by the region in between the dashed lines in Fig. 7.

An FM interference in the form u(n) = e/#™ is solely characterized by its IF, which can
be estimatéd using a variety of IF estimators, including the time-frequency distributions
(TFDs) [25], [26].

The TFD of the data, z(n), at time ¢ and radian frequency w, is given by

Ci(t,w,¢) = i io: d(m, Dz(n+m + Dz*(z +m — [)e 9% (32)

I=—o0 m=—00
where ¢(m,!) is the time-frequency kernel which is a function of the lag ! and time-lag
m. Several requirements have been imposed on ¢(m,!) to satisfy desirable distribution
properties, including power localization at the IF. As shown in eqn. (32), the TFD is the
Fourier transform of a time-average estimate of the autocorrelation function.

A time-frequency notch filter can be designed, in which the position of the filter notch
is synchronous with the interference IF estimate. Based on the IF, two constraints should
exist to construct an interference excision filter with desirable characteristics. First, an
FIR filter with short impulse response must be used. Long extent filters are likely to
span segments of changing frequency contents and, as such, allow some of the interference
components to escape to the filter output. Second, at any given time, the filter frequency
response must be close to an ideal notch filter to be able to null the interference with
minimum possible distortion of the signal. This property, however, requires filters with
infinite or relatively long impulse responses.

Amin [27] has shown that a linear-phase five-coefficient filter is effective in FM inter-

ference excision. Assuming exact IF values, the corresponding receiver SINR is given
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by

L

The above expression shows that full interference excision comes at the expense of a change
in the noise variance in addition of a self-noise form, as compared with the non-interference
case. The main objective of any excision process is to reduce both effects. The SINR in
(33) assumes a random IF with uniform distribution over [0, 27]. For an interference with
fixed frequency wy, the receiver SINR becomes dependent on wy. The receiver performance
sensitivity to the interference frequency is discussed in detail in [27].

Wang and Amin [28] considered the performance analysis of the IF-based excision system
using a general class of multiple-zero FIR excision filters showing the dependence of the
BER on the filter order and its group delay. The effect of inaccuracies in the interference
IF on receiver performance was also considered as a function of the filter notch bandwidth.
Closed form approximations for SINR at the receiver are given for the various cases.

One of the drawbacks to the notch filter approach in [27] is the infinite notch depth due
to the placement of the filter zeros. The effect is a “self-noise” inflicted on the received
signal by the action of the filter on the PN sequence underlying the spread information
signal. This problem led to the design of an open-loop filter with adjustable notch depth
based on the interference energy. The notch depth is determined by a variable embedded
in the filter coefficients chosen as the solution to an optimization problem which maximizes
receiver SINR. The TFD is necessary for this work, even for single component signals, be-
cause simple IF estimators do not provide energy information. Amin, Wang, and Lindsey

accomplished this work in [29], incorporating a “depth factor” into the analysis and re-

developing all the SINR calculations. The result was a significant improvement in SINR,

especially at mid-range interference-to-signal ratios (ISR’s), typically around 0 to 20 dB.

Instead of using time-varying excision filters, Barbarossa and Scaglione [30] proposed a
two-step procedure based on dechirping techniques commonly applied in radar algorithms.
In the first step the time varying interference is converted to a fixed frequency éinusoid
eliminated by time invariant filters. The process is reversed. In the second step and the
interference-free signal is multiplied by the interference t-f signature to restore the DS/SS

signal and noise characteristics which have been strongly impacted in the first phase.
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Similar to predictor/subtracter method discussed in Section III, Lach, Amin, and Lind-
sey proposed synthesis/subtracter technique for FM interference using TFD [31]. A replica
of the interference can be synthesized from the t-f domain and subtracted from the incom-
ing signal to produce an essentially interference-free channel.

Another synthesis/subtracter method is introduced in [32] where the discrete evolution-
ary and the Hough transforms are used to estimate the IF. The interference amplitude is
found by conventional methods such as linear filtering or singular value decomposition.
This excision technique applies equally well to one or multi-component chirp-interferers
with constant or time-varying amplitudes and with instantaneous frequencies not neces-
sarily parametrically modeled.

To overcome the drawbacks of the potential ampl.itude and phase errors produced by
the synthesis methods, Amin, Ramineni and Lindsey [33] proposed a projection filter
approach in which the FM interference subspace is constructed from its t-f signature.
Since the signal space at the receiver is not specifically mandated, it can be rotated such
that a single interferer becomes one of the basis functions. In this way, the interference
subspace is one dimensional and its orthogonal subspace is interference-free. A projection
of the received signal onto the orthogonal subspace accomplishes interference excision with
a minimal message degradation. The projection filtering methods compare favorably over
the previous notch filtering sysfems. ,

In [34], Zhang, Amin, and Lindsey proposed a method to suppress more general INBI
signals. The interference subspace is constructed using t-f synthesis methods. In different
to the work in [31], the interferer is removed by projection rather than subtraction. To
estimate the interference waveform, a mask is constructed and applied such that the
masked t-f region captures the interference energy, but leaves out most of the DS/SS
signals.

Seong and Loughlin have also extended the projection method developed by Amin et.
al. [33] for excising constant amplitude FM interferers from DS/SS signals to the case
of AM-FM interferers [35]. Theoretical performance results (correlator SNR and BER)
for the AM-FM projector filter show that FM estimation errors generally cause greater

performance degradation than the same level of error in estimating the AM. The lower-
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bound for the correlator SINR for the AM-FM projection filter for the case of both AM

and FM errors is given by

SINR = ~ IL -1 , (34)
2 2 —a? 2
—E+an+A {1_!_02&1(1—6 A¢)+0Aa}

where L is the PN sequence length, A? is the interference power, o2 is the variance of
AWGN, and 0%, and o4, are the variances of the estimation errors in the AM and FM,
respectively.

Linear t-f signal analysis has also been shown effective to characterize a large class of
nonstationary interferers. Roberts and Amin [36] proposed the use of the discrete Gabor
transform (DGT) as a linear joint time-frequency representation. The DGT can attenuate
a large class of nonstationary wideband interferers whose spectra are localized in the t-f
domain. Compared to bilinear TFDs, the DGT does not suffer from the crossterm in-
terference problems, and enjoys a low computational complexity. In [37], Wei, Harding,
and Bovik devised a DGT-based, iterative time-varying excision filtering, in which a hy-
pothesis testing approach was used to design a binary mask in the DGT domain. The
time-frequency geometric shape of the mask is adapted to the time-varying spectrum of
the interference. They show that such a statistical framework for the transform-domain
mask design can be extended to any linear transform. Both the maximum likelihood test
and the local optimal test are presented to demonstrate performance versus complexity.

The application of the short-time Fourier transform (STFT) to nonstationary interfer-
ence excision in DS/SS comrhunications is considered in [38], [39]. In both papers, due
to the inherent property of STFT to trade off temporal and spectral resolutions, several
STFTs corresponding to different analysis windows were generated. In [38], Ouyang and
Amin used a multiple-pole data window to obtain a large class of recursive STFTs. Sub-
sequently, they employed concentration measures to select the STFT that localizes the
interference in the t-f domain. This procedure is followed by applying a binary excision
mask to remove the high-power t-f region. The remainder is synthesized to yield a DS/SS
signal with improved signal-to-interference ratio (SIR).

In [39], Krongold et. al proposed multiple overdetermined tiling techniques and utilized

a collection of STFTs for the purpose of interference excision. Unlike the procedure in [38],
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the authors in [39] removed the high-value coefficients in all generated STFTs, and used
the combined results, via efficient least-square synthesis, to reconstruct an interference-
reduced signal. Bultan and Akansu [40] proposed a chirplet-transform-based exciser to
handle chirp-like interference types in SS communications.

The block diagram in Fig. 8 depicts the various interference rejection techniques using

the time-frequency methods cited above.

A. Ezample

At this point, in order to further illustrate these excision methods, the work in [33] will be
detailed since it includes comparisons between the two most prominent techniques based on
TFDs currently being studied — notch filtering and projection filtering. The signal model
is, as expécted, given by (1), and the major theme of the work is to annihilate interference
via projection of the received signal onto an “interference-free” subspace generated from
the estimated interference characteristics. This paper includes a figure, reprinted here as
Fig. 9, which clearly illustrates the trade-offs between projection and notch filtering based
on the ISR. In the legend, the variable a represents the adaptation parameter for the
notch filtering scheme and N represents the block size, in samples, for a 128 sample bit
duration in the projection method. Thus, N = 128 means no block processing and N = 2
corresponds to 64 blocks per bit being processed for projection. Since the projection and
non-adaptive notch filter techniques are assumed to completely annihilate the interference,
their performance is decoupled from the interference power, and therefore correctly indicate
constant SINR across the graph. The dashed line representing the notch filter with a =0
is really indicating no filtering at all, since the adaptation parameter controls the depth
of the notch.

It is evident from Fig. 9 that without adaptation a crossover point occurs around 2 dB
where filtering with an infinitely deep notch is advantageous. Thus when the interference
power exceeds this point, presumably a user would flip a switch to turn on the excision
subsystem. However, with adaptation, this process happens automatically, while giving
superior performance in the midrange. For the projection technique, the block size de-
termines receiver performance conspicuously (ceteris paribus). Most important to note,

however, is the superior performance of projection over all methods when the block size
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is equal to the bit duration, i.e. no block processing. It is feasible that computational
complexity may warrant a trade-off between SINR and block size, in which case a hybrid
implementation may be of benefit — one that automatically switches between adaptive
notch filtering and projection depending on the desired SINR. In any case, this example il-
lustrates the parameters involved in the design of modern excision filters for nonstationary

interferers.

V. Interference Suppression for Frequency Hopping Communications

Interference rejection for FH is not as well developed as interference rejection for DS or
for CDMA. In FH systems, the fast FH (FFH) is of most interest, and the modulation most
commonly used in FH is frequency-shift keying (FSK). Two types of interference waveforms
can be categorized, namely, partial-band interference (PBI) and muititone interference
(MTT).

The effects of PBI and AWGN on several diversity-combining receivers in FFH/FSK SS
communication systems have been investigated in [41], [42], [43], [45]. In [46], an alterna-
tive method using a fast Fourier transform (FFT) is proposed. In [41] the authors present
an automatic gain-control (AGC) receiver using a diversity technique. In this method,
each soft-decision square-law detected MARK and SPACE filter output is weighted by
the inverse of the noise power in the slot prior to linear combining. This method is near-
optimal (in terms of SNR) if the exact information of noise and interference power can
be obtained. A similar clipped-linear combining receiver was also reported in [43]. Due
to the difficulty of such information, self-normalizing receivers [42] and the ratio-statistic
combining technique [44] use the output values of the square-law detector in each hop to
derive a weight or normalizing factor. The performance of these two methods is shown to
be comparable to that of the square-law clipper receiver.

In [45] the authors describe an FFH receiver that employs a prewhitening filter to reject
NBI. For binary FSK modulations, it is shown that the FFH signal is statistically uncorre-
lated at lag values of T}, /(4N,,) where T}, is the hop duration and 2N, is the total number
of frequency slots (i.e., there are N, MARK and N;, SPACE’s). Thus, as in the DS case,
NBI can be predicted and suppressed independently of the desired FFH signal. Using the
complex LMS algorithm to update the prewhitening filter coefficients, this technique is
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shown to compare favorably with the maximal-ratio combiner diversity technique. When
the interferer is wide-sense stationary, the prewhitening filter based receiver provides per-
formance approaching that of the AGC receiver and at least 2 — 3 dB superior to that of
the self-normalizing receiver. However, when hostile interference is present, the adaptive
prewhitening filter technique may not be able to track the interference rapidly enough. In
this case, nonparametric techniques such as the self-normalizing receiver must be used to
reject the jammed hops.

Reed and Agee [47] have extended and improved on the idea of whitening by using a
time-dependent filter structure to estimate and remove interference, based on the interfer-
ence spectral correlation properties. In this method, the detection of FH/SS in the presence
of spectrally correlated interference is nearly independent of the SIR. The process can be
viewed as a time-dependent whitening process with suppression of signals that exhibit a
particular spectral correlation. The technique is developed from the maximum-likelihood
estimate of the spectral frequency of a frequency agile signal received in complex Gaussian
interference with unknown spectral correlation. The resulting algorithm uses the corre-
lation between spectrally separated interference components to reduce the interference
content in each spectral bin prior to the whitening/detection operation.

In [46], an alternative approach to suppress PBI using the FFT is proposed. The major
attraction of FFT-based implementation lies in the ability to achieve guaranteed accuracy
and perfect reproducibility.

For suppression of MTI, basically the same processing methods applied for PBI can be
employed. Howev;ar, the performance analyses differ from those for PBI situations. The
performance depends on the distribution of the MTI and, in turn, how many bands are
contaminated by MTL Performance analyses of FFH SS systems are presented in [48], [49]
for linear combining diversity, in [50] clipped diversity, in [51], [52] for maximum likelihood

and product-combining receivers.

115




References

[1] M. Amin and A. Lindsey, “Time-frequency for interference mitigation in spread spectrum communi-
cation systems,” CRC, B. Boashash (ed.), Prentice-Hall, Spring 2002.

[2] L. B. Milstein, “Interference rejection techniques in spread spectrum communications,” Proc. IEEE,
vol. 76, no. 6, pp. 657-671, June 1988. _

[3] H. V. Poor and L. A. Rusch, “Narrowband interference suppression in spread-spectrum CDMA,”
IEEE Personal Comm. Mag., vol. 1, no. 8, pp. 14-27, Aug. 1994.

[4] J. D. Laster and J. H. Reed, “Interference rejection in digital wireless communications,” IEEE Signal
Processing Mag., vol. 14, no. 3, pp. 37-62, May 1997.

[5] M. G. Amin and A. N. Akansu, “Time-frequency for interference excision in spread-spectrum com-
munications,” section in “Highlights of signal processing for communications,” G. Giannakis, editor,
IEEF Signal Processing Mag., vol. 15, no. 5, Sep. 1998.

[6] F. M. Hsu and A. A. Giordano, “Digital whitening techniques for improving spread-spectrum com-
munications performance in the presence of narrow-band jamming and interference,” IEEE Trans.
Commun., vol. COM-26, pp. 209-216, Feb. 1978.

[7] J. W. Ketchum and J. G. Proakis, “Adaptive algorithms for estimating and suppressing narrow-band
interference in PN spread-spectrum systems,” IEEE Trans. Commun., vol. COM-30, pp. 913-924,
May 1982.

[8] L. Liand L. B. Milstein, “Rejection of narrow-band interference in PN spread-spectrum system using
transversal filters,” IEEE Trans. Commaun., vol. COM-30, pp. 925-928, May 1982.

[9] R. A. Ilitis and L. B. Milstein, “Performance analysis of narrow-band interference rejection techniques
in DS spread-spectrum systems,” IEEE Trans. Commun., vol. COM-32, pp. 1169-1177, Nov. 1984.

[10] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

[11] R. A. Ditis and L. B. Milstein, “An approximate statistical analysis of the Widrow LMS algorithm
with application to narrow-band interference rejection,” IEEE Trans. Commun., vol. COM—33, pPpP-
121-130, Feb. 1985.

[12] F. Takawira and L. B. Milstein, “Narrowband interference rejection in PN spread spectrum system
using decision feedback filters,” in Proc. MILCOM, pp- 20.4.1-20.4.5, Oct. 1986.

[13] J. G. Proakis, Digital Communications, 3rd ed. New York, NY: McGraw-Hill, 1995.

[14] L. B. Milstein and P. K. Das, “Spread spectrum receiver using surface acoustic wave technology,”

 IEEE Trans. Commun., vol. COM-25, pp. 841-847, Aug. 1977.

[15] S. Davidovici and E. G. Kanterakis, “Narrowbnd interference rejection using real-time Fourier trans-
form,” IEEE Trans. Commun., vol. 37, pp. 713-722, July 1989.

[16] R. C. Dipietro, “An FFT based technique for suppressing narrow-band interference in PN spread
spectrum communication systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Proc., pp. 1360-
1363, 1989.

116




[17] M. V. Tazebay and A. N. Akansu, “Adaptive subband transforms in time-frequency excisers for DSSS
communication systems,” IEEE Trans. Signal Processing, vol. 43, pp. 1776-1782, Nov. 1995.

[18] M. Medley, G. J. Saulnier, and P. Das, “Adaptive subband filtering of narrowband interference,” H.
Szu, Ed., SPIE Proc. — Wavelet Appls. III, vol. 2762, April 1996.

[19] J. Gevargiz, M. Rosenmann, P. Das, and L. B. Milstein, “A coparison of weighted and non-weighted
transform domain processing systems for narrowband interference excision,” in Proc. MILCOM, pp.
32.3.1-32.3.4, 1984. '

[20] S. D. Sandberg, “Adapted demodulation for spread-spectrum receivers which employ transform-
domain interference excision,” IEEE Trans. Commun., vol. 43, pp. 2502-2510, Sept. 1995.

[21] A. Haimovich and A. Vadhri, “Rejection of narrowband interferences in PN spread spectrum systems
using an eigenanalysis approach,” in Proc. IEEE Signal Processing Workshop on Statistical Signal
and Array Processing, Quebec, Canada, pp. 1002-1006, June 1994. |

[22] B. K. Poh, T. S. Quek, C. M. S. See, and A. C. Kot, “Suppression of strong narrowband interference
using eigen-structure-based algorithm,” in Proc. MILCOM, pp. 1205-1208, July 1995.

[23] L. A. Rusch and H. V. Poor, “Multiuser detection techniques for narrow-band interference suppression
in spread spectrum communications,” IEEE Trans. Commun., vol. 43, pp. 1725-1737, Feb./Mar./Apr.
1995. |

[24] H. V. Poor and X. Wang, “Code-aided interference suppression for DS/CDMA communications. I.
Interference suppression capability,” IEEE Trans. Commun., vol. 45, pp. 1101-1111, Sept. 1997.

[25] B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals,”
Proc. IEEE, vol. 80, pp. 520-538, Apr. 1992.

[26] B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms
and applications,” Proc. IEEE, vol. 80, pp. 540-568, Apr. 1992.

[27] M. G. Amin, “Interference Mitigation in Spread-Spectrum Communication Systems Using Time-
Frequency Distributions,” IEEE Trans. Signal Processirig, vol. 45, no. 1, pp. 90-102, Jan. 1997.

[28] C. Wang and M. G. Amin, “Performance analysis of instantaneous frequency based interference
excision techniques in spread spectrum cbmmunications,” IEEFE Trans. Signal Processing, vol. 46, no;
1 pp. 70-83, Jan. 1998. , '

[29] M. G. Amin, C. Wang, and A. R. Lindsey, “Optimum Interference Excision in Spread-Spectrum
Communications Using Open-Loop Adaptive Filters,” IEEE Trans. Signal Processing, July 1999.
[30] S. Barbarossa and A. Scaglione, “Adaptive time-varying cancellations of wideband interferences in
spread-spectrum communications based on time-frequency distributions,” IEEE Trans. Signal Pro-

cessing, vol. 47, no. 4, pp. 957-965, April 1999.

[31] S. Lach, M. G. Amin, and A. R. Lindsey, “Broadband nonstationary interference excision in spread-
spectrum communications using time-frequency synthesis techniques,” IEEE J. Select. Areas Com-
mun., vol. 17, no. 4, pp. 704-714, April 1999.

[32] H. A. Khan and L. F. Chaparro, “Formulation and implementation of the non-stationary evolutionary

117




Wiener filtering,” 'Signal Processing, vol. 76, pp. 253-267, 1999.

[33] M. G. Amin, R. S. Ramineni, A. R. Lindsey, “Interference excision in DSSS communication systems
using projection techniques,” in-Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Istanbul,
Turkey, June 2000.

[34] Y. Zhang, M. G. Amin, and A. R. Lindsey, “Combined Synthesis and Projection Techniques for
Jammer Suppression in DS/SS Communications,” IEEE Int. Conf. Acoust., Speech, Signal Process.,
Orlando, FL, May 2002.

[35] S.-C. Jang and P. J. Loughlin, “AM-FM interference excision in spread spectrum communications
via projection filtering,” J. Applied Signal Processing, 2001. '

[36] S. Roberts and M. Amin, “Linear vs. bilinear time-frequency methods for interference mitigation
in direct-sequence spread-spectrum communication systems,” Proc. Asilomar Conf. Signals, Systems,
and Computers, Pacific Grove, CA, Nov. 1995.

[37] D. Wei, D. S. Harding, and A. C. Bovik, “Interference rejection in direct-sequence spread-spectrum
communications using the discrete Gabor transform,” Proc. IEEE Digital Signal Processing Workshop,
Bryce Canyon, UT, Aug. 1998.

[38] X. Ouyang, M. G. Amin, “Short-time Fourier transform receiver for nonstationary interference ex-
cision in direct sequence spread spectrum communications,” IEEE Trans. Signal Processing, vol. 49,
no. 4, pp. 851-863, April 2001.

[39] B. S. Krongold, M. L. Kramer, K. Ramchandran, and D. L. Jones, “Spread-spectrum interference
suppression using adaptive time-frequency tilings,” Proc. IEEE Int. Conf. Acoust. Speech, Signal
Process., Munich, Germany, April 1997.

{40] A. Bultan and A. N. Akansu, “A novel time-frequency exciser in spread-spectrum communications
for chirp-like interference,” Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., Seattle, WA, May
1998.

[41] J. S. Lee, L. E. Miller, and Y. K. Kim, “Probability of error analysis of a BFSK frequency-hopping
system with diversity — Part I1,” IEEE Trans. Commun., vol. COM-32, pp. 1243-1250, Dec. 1984.

[42] L. E. Miller, J. S. Lee, and A. P. Kadrichu, “Probability of error analyses of a BPSK frequency-
hopping system with diversity under partial-band jamming interference — Part III: Performance of a
square-law self-normalizing soft decision receiver,” IEEE Trans. Commun., vol. COM-34, pp. 669-675,
July 1986.

[43] C. M. Keller and M. B. Pursley, “Clipper diversity combining for channels with partial-ba.nd interfer-
ence — Part I: Clipper linear combining,” IEEE Trans. Commun., vol. COM-35, pp. 1320-1328, Dec.
1987. _

[44] C. M. Keller and M. B. Pursley, “Clipper diversity combining for channels with partial-band 'inter-
ference — Part IT: Ratio-statistic combining,” IEEE Trans. Commun., vol. COM-37, pp. 145-151, Feb.
1989.

[45] R. A. Titis, J. A. Ritcey, and L. B. Milstein, “Interference rejection in FFH systems using least squares

118




estimation techniques,” IEEE Trans. Commun., vol. 38, pp. 2174-2183, Dec. 1990.

[46] K. C. Teh, A. C. Kot, K. H. Li, “Partial-band jammer suppression in FFH spread-spectrum system
using FFT,” IEEE Trans. Vehi. Tech., vol. 48, pp. 478-486, March 1999.

[47] J. H. Reed and B. Agee, “A technique for instantaneous tracking of frequency agile signals in the
presence of spectrally correlated interference,” Proc. Asilomar Conf. Signals, Systems, and Computers,
Pacific Grove, CA, Nov. 1992.

[48] B, K. Livitt, “FH/MFSK performance in multitone jamming,” IEEE J. Select. Areas Commun., vol.
SAC-3, pp. 627643, Sept. 1985.

[49] R. E. Ezers, E. B. Felstead, T. A. Gulliver, and J. S. Wight, “An analytical method for linear
combining with application to FFH NCFSK receivers,” IEEE J. Select. Areas Commaun., vol. 11, pp.
454-464, Apr. 1993.

[50] J. J. Chang and L. S. Lee, “An exact performahce analysis of the clipped diversity combining receiver
for FH/MFSK systems against a bana multitone jammer,” IEEE Trans. Commun., vol. 42, pp. 700-
710, Feb./Mar./Apr. 1994.

[51] K. C. Teh, A. C. Kot, K. H. Li, “Performance study of a maximum-likelihood receiver for FFH/BFSK
systems with multitone jamming,” IEEFE Trans. Commun., vol. 47, pp. 766-772, May 1999.

[52] K. C. Teh, A. C. Kot, K. H. Li, “Performance analysis of an FFH/BFSK product-combining receiver
under multitone jamming” IEEE Trans. Vehi. Tech., vol. 48, pp. 1946-1953, Nov. 1999.

119




Received
signal

Fig. 1 Estimator/subtracter based interference suppression.

Estimating
filter

SS
receiver

Bit
estimate

Fig. 2 Single-sided transversal filter.

120




I

A
SIGNAL
R o MR
\
A > @
S
| —l - 25,

D

Fig. 3 Transform-domain notch filtering.

m
b virtual
users

|

R P

Fig. 4 Virtual CDMA systems ({synchronous case).

121




Bank of
matched filters

Decision
algorithm

———> Bit estimate

Fig. 5 Multiuser detector structure.

Freq.

Fig. 6 Excision methods for nonstationary

122

T, Time

interferers.




Received

Data

Reduced-Interference

Filtering,
DSSS Signal

Synthesis,

Substraction,
Projection
b

>

b

»

y

>
»

Instantaneous Frequency
Instantaneous Bandwidth
Time-Frequency Subspace
Time-Frequency Signatures
Modified PN

Linear and Bilinear

Fig.7

Time-Frequency
Signal Representations

\ 4

Interference rejection techniques

» Correlator
h

25 T T T ¥ T T T
20 k- -‘N\ ‘ |
_________-____._.'.'_"-..::"'_":M
~ ) .'-..'
815 Srreeseseese .
N
né .
7]
107 [ Notch Filter, a=0
~~~" Notch Filter, a=1 .
== Adaptive Notch Filter
—*— Projection, N=2
5T | — Projection, N=4 ]
—=— Projection, N=8
—*— Projection, N=128
O L | H 1 - i i 1
20 -15 -10 -5 5 10 15 20

0
JSR (dB)

Fig. 8 Comparison between projection and notch filtering excision

methods.

123




In B. Boashash, Time-Frequency Signal Analysis and Processing:
A Comprehensive Reference, Elsevier, Oxford, UK, 2003.

Spatial Time-Frequency Distributions
and Their Applications

Moeness G. Amin and Yimin Zhang

Department of Electrical and Computer Engineering, Villanova
University, Villanova, PA 19085, USA

I. Spatial Time-Frequency Distributions

The evaluation of quadratic time-frequency distributions (TFDs) of nonstationéry sig-
nals impinging on a multi-sensor receiver yields spatial tirﬁe—frequency distributions (STFDs),
which permit the application of eigenstructure subspace techniques to solving a large class
of channel estimation and equalization, blind source separation (BSS), and high resolution
direction-of-arrival (DOA) estimation problems [1], [2], [3]. STFD based techniques are
appropriate to handle sources of nonstationary waveforms that are highly localized in the
time-frequency (t-f) domain. In the area of BSS, the use of the STFDs allows the separa-
tion of sources with identical spectral shape, but with different t-f localization properties,
i.e., different t-f signatures. For both source separation and DOA estimation problems,
spreading the noise power while localizing the source energy in the t-f domain amounts to
increasing the robustness of eigenstructure signal and noise subspace estimation methods
with respect to channel and receiver noise. This in turn leads to an improvement of spatial
resolution and source separation performance.

The quadratic class of STFD matrix of a signal vector x(t) is defined as

T .

Dyx(t, f) = /_oo /_oo ng(v,T)x(u+ 2)XH(’U, - %)ejh(w*vt_fﬂdrdu dv, (1)

where g(v,7) is the kernel function.
In narrowband array processing, when n signals arrive at an m-element array (see Fig.

I), the linear data model

x(t) = y(t) +n(t) = Ad(t) +n(?) )
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is commonly assuined, where x(t) is the m x 1 data vector received at the array, d(¢) is the
n X 1 source data vector, the m x n spatial matrix A = [a; - - - a,] represents the mixing
matrix, a; is the steering vector of ith signal, and n(¢) is an additive noise vector whose
elements are modeled as stationary, spatially and temporally white, zero-mean complex

random processes, independent of the source signals.

#1 ) #1

yd ™
N Vv
#2 #2

A N
N v
#n #m
pd N
N vV

m-element array with n signal arrivals.

Under the uncorrelated signal and noise assumption and the zero-mean noise property,
the expectation of the crossterm TFD matrices between the signal and noise vectors is

zero, i.e., E [Dyn(t, f)] = E [Dyy(t, )] = 0, and it follows

E [Dyx(t, f)] = Dyy(t, f) + E [Dun(t, )] = ADaa(t, f)AH + 01, (3)

where o is the noise power, and I is the identity matrix. Equation (3) is similar to
that which has been commonly used in array processing based on second-order statis-
tics, relating the signal correlation matrix to the data spatial correlation matrix [1]. This
/implies that key problems in various applications of array processing, specifically those
dealing with nonstationary signal environments, can be apprbached using quadratic trans-
férmations. If Dga(t, f) is a full-rank matrix, the two subspaces spanned by the principal
eigenvectors of Dy (¢, f) and the columns of A become identical. In this case, direction
finding techniques based on eigenstructures can be applied. If Dyq(t, f) is diagonal, i.e.,
the signal cross-TFDs at the t-f point (¢, f) are zeros, then both the mixing matrix and

the signal waveforms can be recovered using BSS methods.
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II. Fundamental Properties

There are five key advantages of array signal processing using STFD. In order to properly
explain these advantages, we use the diagram in Fig. II. We consider two sources A and
B incident on a multi-sensor array. Source A occupies the t-f region R,, whereas source B
occupies the t-f region Ry. The t-f signatures of the two sources overlap, but each source
still has a t-f region that is not intruded over by the other source.

f

4

Signals with different time-frequency signature.

t

1) Equation (3) can be easily derived for any arbitrary joint-variables. Time and fre-
quency are indeed the two most commonly used and physically understood parameters.
However, by replacing the STFDs by spatial arbitrary joint-variable distributions, one
can relate the sensor joint-variable distributions to the sources joiﬁt—variable distributions
through the same mixing matrix A. As shown in the Examples Section, there are situa-
tions where it is preferable to consider other domains such as the ambiguity lag-Doppler
domain, where the locations of the signals and their cross-terms are guided by properties
and mechanisms different than those associated with the t-f domain.

2) Equation (3) is valid for all t-f points. It is well known that direction finding tech-
niques require Dgyq(t, f) to be full rank, preferably diagonal. On the other hand, BSS
techniques demand the diagonal structure of the same matrix without degenerate eigen-
values. These properties along with high signal-to-noise ratio (SNR) requirements may be
difficult to achieve using a single t-f point. Two different methods can be used for inte-
grating several t-f points into equation (3). One method is based on a simple averaging

performed over the signatures of the sources of interest, whereas the second method is
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based on incorporating several desired t-f points into joint diagonalization or joint block-
diagonalization schemes.

3) The TFD of the white noise is distributed all over the t-f domain, whereas the TFDs
of the source waveforms are likely to be confined to much smaller regions. Referring to
Fig. II, the noise is spread over both R, and R, as well as the complement region R..
If the t-f points (¢, f) used in either the averaging or joint diagonalization approaches
belong to the noise only region R,, then no information of the incident waveforms is used
and, as such, no reasonable source localization and signal separation outcomes can be
obtained. On the other hand, if all points (¢, f) in Fig. II are used, and the employed TFD
satisfies the marginal constraints, then it can be easily shown that only the signal average
power is considered. As a result, the problem simplifies to the second-order covariance
based matrix approach, traditionally used in high resolution DOA estimation. This is
an important feature, as it casts the conventional techniques as special cases of the array
signal processing framework based on t-f analysis. Finally, if we confine the (¢, f) points to
R, and Ry, then only the noise part in these regions is included. The result of leaving out
the points (¢, f) that are not part of the t-f signatures of the signal arrivals is enhancing the
input SNR, which is utilized by the source localization and signal separation techniques.

4) By only selecting t-f points that belong to the t-f signature of one source, then
this source will be the only one considered by equation (3). This selection, in essence,
is equivalent to implicitly performing spatial filtering and removing other sources from
consideration. It is important to note, however, that such removal does not come at
the expense of reduction of the number of degrees-of-freedom (DOFs), as it is the case in

beamspace processing, but the problem remains a sensor space processing with the original

‘number of DOF's kept intact. This property represents a key contribution of TFDs to the

direction finding and DOA estimation areas. An antenna array can be used to localize
a number of sources equal or even greater than its number of sensors. The fundamental
condition is that there must be t-f regionslover which the respective t-f signatures of the
sources do not overlap. Referring to Fig. II and considering the case of two sensors, if
all t-f points incorporated in direction finding belong to region R, and not R, then the

signal subspace defined by equation (3) is one-dimensional. Thus, by excluding source
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B, a one-dimensional noise subspace is established. This allows us to proceed with high
resolution techniques for localization of source A. In a general scenario, one can localize
one source at a time or a set of selected sources, depending on the array size, overlapping
and distinct t-f regions, and the dimension of the noise subspace necessary to achieve the
required resolution performance. The same concepts and advantages of t-f point selection
discussed above for direction finding can be applied to BSS problems.

5) The a priori knowledge of some temporal characteristics or the nature of time-varying
frequency contents of the sources of interest may permit us to directly select the t-f regions
used in equation (3). For instance, it is known that, in the ambiguity domain, all fixed
frequency sinusoidal signals map to the time-lag axis. By only incorporating the points
on this axis, we have, in fact, opted to separate and localize all narrowband signals in

broadband communications platforms.

ITI. Examples

In this Section, we present simulation examples to demonstrate the fundamental offer-
ings discussed in the previous Section. Time-frequency MUSIC (t-f MUSIC), ambiguity-
domain MUSIC (AD-MUSIC), and the BSS based on STFDs are three different techniques
chosen for the demonstration. The algorithms involved in the implementation of the tech-
niques are given in Tables I, II, and III [2], [4], [1].

Ezample I [4]. Consider the scenario of a four-element equi-spaced linear array spaced
by half a wavelength, where one chirp signal and two sinusoidal signals are received. The
data record has 128 samples. All three signals have the same SNR of 20 dB. The DOAs
of the chirp signal and the two sinusoidal signals are 15°, 10°, and 0°, respectively. While
the ambiguity function of the chirp signal sweeps the ambiguity domain with contribution
at the origin, the exact autoterm ambiguity function of ihe narrowband arrivals s, (t) and
8o(t) is zero for non-zero frequency-lags and may have non-zero values only along the
vertical axis v = 0. A

In this simulation example, we selected 24 points on the time-lag axis, excluding the
origin, and as such emphasizing the narrowband components. Fig. III shows the ambiguity
function where the two vertical lines away from the origin represent the crossterms between

the sinusoidal components. Fig. III shows the two estimated spatial spectra for three
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Time-Frequency MUSIC.

STEP 1

STEP 11

STEP III

Form K matrices Dy (t;, f;) for the selected (¢;, f;) points,
i=1,---, K.

The eigenvectors of E [Dyx(%, f)] corresponding to the m —n
smallest eigenvalues,ey,---,e,_n, are obtained by joint block-

diagonalization, or the eigen-decomposition of averaged matrix

1 K
T Dxx(tia fz)
K

Estimate the number of signals from the eigenvalues, and
estimate the DOAs from the peaks of the t-f MUSIC spectra
. ~ -2 -
EnHa(ﬁ)l , where E,, = [e, -+, €,_,], and a() is

f(0) =

the steering vector corresponding to DOA 6.

Ambiguity-Domain MUSIC

Ambiguity-Domain MUSIC follows the same procedure as time-frequency

MUSIC by using Dy (v;, 7;) instead of Dyxx(t;, fi), i =1,---, K.

independent trials, one corresponds to the conventional method and the other corresponds
to the AD-MUSIC. There are two dominant eigenvalues for the case of the AD-MUSIC,
since we have not deliberately considered the chirp signal through our careful selection of

the ambiguity-domain points. It is clear that the AD-MUSIC resolves the two sinusoidal

signals, while the conventional MUSIC could not separate the three signals.

Example I1[5]. Consider a uniform linear array of eight sensors separated by half a wave-

length. Two chirp signals emitted from two sources positioned at (6y,6;) = (—10°,10°),
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Blind Source Separation Based on STFDs

STEP 1 Estimate the auto-correlation matrix Ry, from T data samples.
Denote by Ay, ---, A, the n largest eigenvalues and hy, - - -, h, the

corresponding eigenvectors of Ryy.

STEP II  An estimate 62 of the noise variance is the average of the m — n

smallest eigenvalues of R.x. The whitening matrix is formed as

W= [\ - %) 3y, -, (0 — 62730,

STEP III Form K matrices by computing the STFD of whitened vector
z(t) = Wx(t) for a fixed set of (t;, f;) points,i=1,---, K,

corresponding to signal autoterms.

STEP IV A unitary matrix U is then obtained as joint diagonalizer of the
set Dzz(tiafi),izl;”':K- |

STEP V  The source signals are estimated as 8(t) = U¥Wx(t), and the

mixing matrix A is estimated as A = W#U.

respectively. The data record has 1024 samples. The start and end frequencies of the
chirp signal of the source at 8, are f;; = 0 and f.; = 0.5, while the cbrresponding two
frequencies for the signal of the other source at 6, are f;» = 0.5 and f.o = 0, respectively.
Fig. III displays the standard deviations of the DOA estimation 6, versus SNR. The
curvés in this figure show the theoretical and experinienta,l results of thé conventional
- MUSIC and t-f MUSIC. Pseudo Wigner-Ville distribution with window length L = 33
and 129 are considered. The Cramer-Rao Bound (CRB) is also shown in Fig. III. Both |
signals are selected when performing t-f MUSIC. Simulation results are averaged over 100

independent trials of Monte Carlo experiments. The advantages of t-f MUSIC in low SNR
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cases are evident from this figure. Fig. III shows estimated spatial spectra at SNR=—20
dB based on t-f MUSIC (L = 129) and the conventional MUSIC. The t-f MUSIC spectral
peaks are clearly resolved. |
Ezample 111 [1]. In Fig. II, we show an example of the application of STFDs to the BSS
problem. A three-element equi-spaced linear array is considered where the interelement
spacing is half a wavelength. Two chirp signals arrive at —10° and 10°, respectively. The
number of data samples used to compute the STFD is 128. The number of t-f points
employed in the joint diagonalization is p=128, with equal number of points on each
signature. Fig. III(b) shows the Choi-Williams distributions of two linear mixtures of the
original chirp signals depicted in Fig. I1I(a), corresponding to the data at the first and the
second sensors. Using the STFDs, we are able to recover the original signals from their

observed mixture, as shown in Fig. III(c).
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IV. Crossterm Issues in STFD

There are two sources of crossterms. The first type are the crossterms that are the results
of the interactions bbetween the components of the same source signal. The other type
of crossterms are those generated from the interactions between two signal components
belonging to two different sources. These crossterms are associated with cross-TFDs of the
source signals and, at any given t-f point, they constitute the off-diagonal entries of the
source TFD matrices Dgq(Z, f) defined in (3). Although the off-diagonal elements do not
necessarily destroy the full-rank matrix property necessary for direction finding application
[6], they violate the basic assumption in the problem of source separation regarding the
diagonal structure of the source TFD matrix. We must therefore select the t-f points that
belong to autoterm regions where crossterm contributions are at minimum, e.g., by using
a priort information of the source signals.

The method of spatial averaging of the STFD introduced in [7] does not reduce the
crossterms as in the case with reduced interference distribution kernels, but rather move
them from their locations on the off-diagonal matrix entries to be part of the matrix
diagonal elements. The other parts of the matrix diagonal elements represent the contri-
bution of the autoterms at the same point. Therefore, not only we are able to set the
o{f—diégonal elements of the source TFD matrix to zeros, but also we can improve per-
formance by selecting the t-f points of peak values, irrespective of whether these points

belong to autoterm or crossterm regions.
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A. Summary and Conclusions

The spatial time-frequency distribution (STFD) is an:important tool for temporal and
spatial separations of sources emitting nonstationary signals. It is a discriminatory tool
that allows a consideration of only a subset of source signals impinging on a multi-sensor
receiver. This property enhances signal parameter estimation and permits direction finding
and signal separation to be applied to a number of sources that is equal or even exceeds
the number of sensors.

All material presented in this article is based on the model (2). One important change in
the direction of the research in the time-frequency array signal processing area was given in
[8], where the strict model of (2) was relaxed and a direction finding technique employing
a STFD-based wideband root-MUSIC was proposed. Another research direction is the
utilization and integration of crossterms into STFDs. It has recently been shown [9] that
source separation can be performed based on both autoterms and crossterms through joint

diagonalization and joint anti-diagonalization schemes of STFD matrices.

References

[1] A. Belouchrani and M. G. Amin, “Blind source separation based on time-frequency
signal representation,” IEEE Trans. Signal Processing, vol. 46, no. 11, pp. 2888—2898,
Nov. 1998.

t-fMUSIC
SN RN

Magnitude

—40 -10 10 40
6 (deg)

The estimated spatial spectra of t-f MUSIC and conventional MUSIC.

133




[2] A. Belouchrani and M. G. Amin, “Time-frequency MUSIC,” IEEE Signal Processing
Letters, vol. 6, no. 5, pp. 109-110, May 1999.

[3] Y. Zhang, W. Mu, and M. G. Amin, “Time-frequency maximum likelihood methods
for direction finding,” J. Franklin Inst., vol. 337, no. 4, pp. 483-497, July 2000.

[4] M. G. Amin, A. Belouchrani, and Y. Zhang, “The spatial ambiguity functidn and its
applications,” IEEE Signal Processing Letters, vol. 7, no. 6, pp. 138-140, June 2000.

[5] Y. Zhang, W. Mu, and M. G. Amin, “Subspace analysis of spatial time-frequency
distribution matrices,” IEEE Trans. Signal Processing, vol. 49’, no. 4, pp. 747-759,
April 2001.

[6] M. G. Amin and Y. Zhang, “Direction finding based on spatial time-frequency distri-
bution matrices,” Digital Signal Processing, vol. 10, no. 4, pp. 325-339, Oct. 2000.

[7] Y. Zhang and M. G. Amin, “Spatial averaging of time-frequency distributions for signal
recovery in uniform linear arrays,” IEFE Trans. Signal Processing, vol. 48, no. 10, pp.
2892-2902, Oct. 2000.

[8] A. B. Gershman and M. G. Amin, “Wideband direction-of-arrival estimation of mul-
tiple chirp signals using spatial time-frequency distributions,” IEEE Signal Processing
Letters, vol. 7, no. 6, pp. 152-155, June 2000.

[9] A. Belouchrani, K. Abdel-Meraim, M. G. Amin, and A. Zoubir, “Joint anti-
diagonalization for blind source separation,” in Proc. IEEE Int. Conf. Aéoust., Speech,

Signal Process., Salt Lake City, UT, May 2001.

134




TFD of source ¥ TFD of source 2

20 40 60 80 100 120 20 40 60 80 100 120
Time Time

(a) TFDs of the source signals

TED of mixed signal 1 TFD of mixed signat 2
o

-5

0.15

20 40 60 B0 100 120 20 40 60 80 100 120
Time Time

(b) TFDs of the mixed signals

TFD of separated signal 1 TFO of separated signal 2 -
0.

20 40 60 80 100 120 20 40 60 80 100 120
Time Time

(c) TFDs of the separated signals

Blind source separation based on STFDs.

135




In S.Chandran (ed.), Adaptive Antenna Arrays: Trends and Applications,
: New York, NY: Springer-Verlag (in press).

Polarimetric Array Processing for Nonstationary Signals -

Yimin Zhang, Moeness G. Amin, and Baha A. Obeidat
Center for Advanced Communications
Villanova University, Villanova, PA 19085, USA

Abstract

Time-frequency distributions (TFDs) have evolved to be a powerful technique for nonstationary
signal analysis and synthesis. With the use of a multi-sensor array, spatial time-frequency
distributions (STFDs) have been developed and successfully applied to high-resolution direction-of-
arrival (DOA) estimations and blind recovery of the source waveforms. In this paper, we introduce the
spatial polarimetric time-frequency distribution (SPTFD) as a platform to process nonstationary array
signals with two orthogonal polarization components, such as horizontal and vertical. The use of dual
polarization empowers the STFDs with additional degrees-of-freedom (DOFs) and improves the
robustness of the signal and noise subspaces. This improvement serves to enhance DOA estimation
and signal recovery. To demonstrate the effectiveness of the SPTFD platform, the polarimetric time-
frequency ESPRIT (PTF-ESPRIT) method is proposed and is shown to outperform time-frequency,

polarimetric, and conventional ESPRIT methods.
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1 Introduction

Over the past two decades, time-frequency distributions (TFDs) have evolved to be a powerful
. technique for nonstationary signal analysis and synthesis in the areas of speech, biomedicine,
automotive induspry, and machine monitoring [1-5]. In radar signal processing, the time-frequency
signal representation, in its linear and bilinear forms, has been used in target detection, classification,
and clutter suppression [6-10]. Most recently, the spatial dimension has been incorporated, aloﬁg with
the time and frequency variables, into quadratic and higher-order time-frequency distributions, and
led to the introduction of spatial time-frequency distributions (STFDs) for sensor signal processing.
The STFD has been successfully applied to high-resolution direction-of-arrival (DOA) estimations
and blind recovery of the source waveforms impinging on a multi-sensor receiver, specifically those
of nonstationary temporal characteristics [11-19].

Polarization and polarization diversity, on the other hand, have been proven to be very effective in
. wireless communications and various types of radar systems [20,21]. Antenna and target polarization
properties are widely employed in remote sensing and synthesis aperture radar (SAR) applications
[22-24]. Presently, airbome and spaceborne platforms as well as meteorological radars include
polarization information [25,26]. Additionally, polarization plays an effective role for target
identification in the presénce of clutter [27,28]. Polarization has also been incorporated in array
antennas for improved signal parameter estimation, such as DOA and time-of-arrival (TOA) [29-31].

Despite the extensive research work performed in time-frequency signal representations and
polarimetric signal processing methods, these two important areas have not been coupled or
considered within the same platform. In numerous communications and radar applications, moving
sources/targets often generate time-varying Doppler frequency, with well defined Doppler-frequency
vsignatures. Also, mechanical vibration or rotation of structure in a source/targét typically includes
frequency modulation on returned signals. Time-frequency methods have been proposed to
characterize the Doppler-frequency signature as well as to analyze micro-Doppler phenomenon.

However, little attention, if any, has been paid to the fact that the return signal from a moving or
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vibrating target may have a time-varying polarization. The polarimetric Doppler frequency signature
contains valuable information that the single-polarization Doppler frequency signature fails to
provide.

In this paper, we develop the spatial polarimetric time-frequency technique for multi-antenna
receivers. This technique utilizes not only the time-varying Doppler frequency signatures, but also the
polarization signatures, whether they are stationary or time-varying. The signal polarization
information empowers the spatial time-frequency distributions (STFDs), as it retains the integrity of
eigenstructure methods and improves the robustness of the fespective signal and noise subspaées
under low signal-to-noise ratio (SNR) and coherent signal environment.

The importance of this technique stems from the fact that targets, emitters, and scatters, when
changing their positions, are likely to produce Doppler and polarization profiles that are time-
dependent. If the field of view covers multiple sources, then target detection, source location, and
signal recovery benefit from distinctions in polarization, spatial, and time-frequency signatures. With
polarization no longer decoupled from the signal time-varying spectrum characteristics, high
resolution imaging and DOA estimation can be achieved over the cases where the decoupling is
enforced.

The focus of this paper is limited to the proposition of the SPTFD and, as its application example to
demonstrate the effectiveness of this technique, polarimetric time-frequency ESPRIT (PTF-ESPRIT)
for DOA estimation of noncoherent sources is considered [32]. The application to a MUSIC-like
method for non-coherent and coherent signals is introduced separately in [33-35]. |

This paper is organized as follows. Section 2 introduces the signal model and briefly reviews the
definition of STFD. In Section 3 the polarimetric time-frequency distribution (PTFD) and SPTFD are
introduced and defined. The PTF-ESPRIT is proposed in Section 4. Section 5 presents simulation

results and Section 6 concludes this paper.
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Table 1. Notations

A Matrix O complex conjugate
a Vector Y polarization index
OF Transpose Of  Hermitian

2 Signal Model

2.1 Time-Frequency Distributions

The Cohen's class of TFDs of a signal x(¢) is expressed as [4]

D ¢t f)= j' j¢(t —u, T)x(t +7/2)x"(t —7/2) e 7 *dudt @

where t and f represent the time index and frequency index, respectively. The kernel ¢ (¢, 7) uniquely
defines the TFD and is a function of the time and lag variables. In this paper, all the integrals are from
— oo {0 o,

The TFDs, given in Eq. (1), have been shown to be a powerful tool in analysis of signals with time-
varying frequencies. They are used in different applications for ninstationary signal detection,

classification, and discriminations [1-5]. The cross-sensor TFD of two signals x;(f) and xx(f) is defined

by

D,, (. /)= [[#(t -1, 7%t +2/2)x, /D) & dudr . )

2.2 Spatial Time-Frequency Distributions

Consider a narrowband array processing problem, where n signals arrive at an m-element array.

The following linear data model is assumed,




x(t) = As(f) + n(t) 3)

where the mxn spatial matrix A =[a,,a,,---,a,] is the mixing matrix which holds the spatiai
information. In this paper, structured mixing matrix, that is, A=A(®)=[a(8,),a(8,),---,a(6,)] is
assumed, where ©=[6,,6,,---,6,] . AThe elements of the mx1 vector x(f), which represents the
measured or sensor data, are multi-component signals, while the elements of the nx1 vector
s(t) =[s,(2), 5,(t), -, s, (11" are often mono-component signals. n(s) is an mx1 additive noise vector,

which consists of independent zero-mean, white and Gaussian distributed processes.

The STFD of a data vector x(r) is expressed as [11]
Dt f) = [[¢t—uDx(t +7/Dx" ¢ ~7/2) P *dudz @

where the (i, k)th element of D_ (¢, f) is defined as [D,. (0. )], = D, (tf), k=12 m.

Due to the linear data model, the noise-free STFD is obtained by substituting (3) into (4),
D,.(t. f) = A@)D(t, /)A" (@) ®)

where D_(t,f) is the TFD matrix of s(z) which consists of auto- and cross-source TFDs as its

elements. With the presence of noise, which is uncorrelated with the signals, the expected values of

the above equations yields
ED,,(t, )] = A@)EID(t, /)IA" (@) + o1 (6)

In the above equation, o is the noise power, I is the identity matrix, and E[.] denotes the statistical
expectation operator.

Equations (5) and (6) are similar to the mathematical forﬁula which haé been commonly used in
narrowband array processing problems, 'relating the source correlation matrix to the sensor spatial
correlation matrix. However, the correlation matrices are replaced by the source and sensor TFD

‘matrices. The two subspaces spanned by the principle eigenvectors of D_ (¢, f) and the columns of
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A(®) are, therefore, identical. In [13-15] it is further shown that, by only selecting the t-f points with
highly localized signal energy, the eigenvalues and eigenvectors estimated from D,,(z, f) are more
robust to noise than their counterparts obtained from the corresponding data covariance matrix
R, = E[x(t)x” ()] . This implies that key problems in various array processing applications can be

addressed and solved using a new formulation that is more tuned to nonstationary signal

environments.

3 Spatial Polarimetric Time-Frequency Distributions

3.1 Polarimetric Time-Frequency Distributions

In passive radar, sonar, and most communication problems, the received signal with dual

polarizations can be expressed as
) =10 AT Y,

where the superscripts ()% and ()", respectively, denote two orthogonal polarizations. They can be,
for example, vertical and horizontal polarizations, or right-hand and left-hand circular polarizations.
In active radar and sonar applications, the received signal with dual transmit and dual receive

polarizations can be expressed as
“x(@) =] xi#p) ® X9 ® xlarl 0 Xl (t)]T (8)

where the first letter of the superscript denotes the transmit polarization, and the second letter denotes

the receive polarization. For notation simplicity and uniformity, we focus only on the pp and gq
components, and let x''(z) and x'() denote x"**'(r) and x'¥'(z), respectively. In this way, Eq. (7)

can be used to represent both passive and active signal processing.

The self- and cross-polarized TFD are expressed as ‘
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D@ f)= H¢(l —u, ) + 1'/2)():{”([ - 1/2))" e dudr ®
and
D oot ) = [[pte ~u, o) + 2/ - 2/2)) € dudz (10)

where the superscripts i and k denote either p or g. The self- and cross-polarized TFDs together define

the polarization TFD matrix,
D,tf)= H¢(t —u, T)x(t +7/2)x" (t —7/2) e " dudr . (1D

The polarization TFD matrix is of dimension 2x2, although it can be 4x4 if the full four element

representation in Eq. (8) is used. The diagonal elements of D (¢, f) are the self-polarized terms
D,...(t,f) , whereas the off-diagonal elements are the cross-polarized terms D . (t.f), i#k -

Accordingly, the polarization TFD matrix can be used to estimate the self- and cross-polarization

signatures of propagation channels.

3.2 Spatial Polarimetric Time-Frequency Distributions

Equations (7)-(11) correspond to a single dual-polarization sensor case. When an array consisting

of m dual-polarized sensors is considered, the data vector, for each polarization i, is expressed as,
x(@) = A" @)s" (1) +nV (1) . (12)

It is noted that, for structured mixing matrices, they are polarization-independent, i.c.,

A(©) = A¥(©) = A(©), and Eq. (12) simplifies to the following,
X)) = A@©)s" (1) +n" (1) . (13)

The generalization of Eq. (9) to the multi-sensor receiver is obtained using Eq. (13). The STFD -

matrix introduced in Eq. (4) can be defined for each polarization
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D ot ) = [[p~ux ¢ + 2/ ~7/D))' e duds . (14)
In the noise-free environment
Dxlilxl"l(ti f) = A(O)Dsﬁgil (t, f)AH(O) .- (15)

In a similar manner, the cross-polarization STFD matrix between the data vectors with two different

polarizations can be obtained as,
D 1 (4 ) = A@)D 11, (1, /)A" (©). (16)

We are now in a position to tie the polarization, the spatial, and the t-f properties of the signals

incident on the antenna array. Based on Eq. (12), the following vector can be constructed for both

polarizations,
)] [A® 0 1P@] o)l
x(t)= | = e
@ | 0 A@|[s90)] [0 (17
=B(0)s(2) +n()
h B(®)=[A(@) 0 ﬂ block-di 1 and s¥(), i= h ignal fi
where 0 A(@) _| 1S OCK-dlagonal an 5 l—P,q, are the source signa vectors for

polarization i. The STFD of the dual-polarization vector, x(#), can therefore be deﬁqed as

D, )= f[o¢—u,Dx(t +7/2x" (¢ ~7/2) e dudr
_ l:A(@) 0 1[Dslrlslpl &) D, fﬂ[A(@) 0 -lH

| (8)
0 A(O)J Dslqlslp! (t7 f) Dslqlsm (ts f)J 0 A(@)J

D_(, f) is referred to as the spatial polarimetric time-frequency distribution (SPTFD) matrix. This

distribution serves as a general framework within which typical problems in array processing can be
addressed [32-35]. In the next section, the polarimetric time-frequency ESPRIT (PTF-ESPRIT) [32] is

shown as an appliéation example of the SPTFD.
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4 Polarimetric Time-Frequency ESPRIT

In order to achieve the rotational invariance in the array at hand, we consider a uniform linear
array with m cross-dipoles. This array is divided into two overlapping subarrays of m-1 elements. Let
the first subarray be composed of the left-most m-1 cross-polarized antennas, and the second subarray
be composed of the right-most m-1 cross-dipoles. Additionally, let the array response matrices of the

identically polarized sensors of the two subarrays be A (®) and A,(®), respectively. Accordingly,

[AZ((-)) 0 "Iz[A,(@) 0 Tp 0|1 (19
0 A,©] | 0 A@O0 @
whére the rotation operator ® can be modeled as

—jZn'%sin(ﬁ ) -jllt%s‘m(ez) —sz%sin(ﬂ,,) (20)

@ = diag[e ,€ ren® 1,

d is the interelement spacing, and A is the wavelength of the impinging signals.
By performing joint block—diagbnalization {12,36] on the SPTFD matrices D_ (1, f) over multiple

(t, f) points where the energy of the signal arrivals is concentrated, we obtain the signal and noise

subspaces, represented as matrices U, and U, , respectively .
The signal eigenvectors, comprising the columns of U_, span approximately the signal subspace of

dimension n such that there exists a transformation matrix T that satisfies

[Aa@© 0 ]
U,_[ 0 A(@)|JT _ @1

where A(©) is the full (undivided) array response matrix for one polarization.

By applying the same transformation matrix T to the steering matrices of the two subarrays, the

following matrices are defined,
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A® 0 ]
U,=| ' T 22
‘ [ 0 A©) @2
and
U _[A,(e) 0 g]'r 23)
20 A@]
Using the above two equations, we have
u,=U,%, (24)
where the matrix W satisfies
o 0]
¥=T" T.
[o @) 23)
j isin
where the eigenvalues of the matrix W are e Jegn®) ,i=1,2,..,n[35]. In order to find the matrix ¥

one has to solve the underdetermined equation (24) using the least-squares or the total least-squares

approach [37]. When the least-squares approach is applied, the solution to (24) is

‘P:(USIHU:I)_IUJIHUxZ' (26)

5 Simulations

We consider a uniform linear array of four dual-polarization cross-dipoles, m=4, with half-
wavelength inter-element spacing. To fully demonstrate the advantages of the proposed SPTFD
framework and the PTF-ESPRIT algorithm, we consider two far-field sources (sources 1 and 2) with

high-order frequency modulated (FM) waveforms in the presence of an undesired sinusoidal signal

(source 3). Table 2 shows three respective DOAs (measured from the broadside), and the two
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polarization parameters, yand @, representing the amplitude ratio (tan) =|S[p 0/ Sm(t)]) and phase

difference between the two polarization components, respectively. The normalized frequency of the
sinusoid is 0.1. All signals have the same signal power (SNR=5 dB). The data length is 256 samples.
The pseudo Wigner-Ville distribution (PWVD) is used to compute the TFDs where a rectangular

window of length 65 is used.

Table 2. Signal parameters

DOA Y(deg) ¢ (deg)
(deg)
Source 1 3 45 0
Source 2 3 45 180
Source 3 5 20 0

5.1 Array and Polarization Averaging of TFDs

The proper selection of t-f autoterms is often important in array processing based on STFDs and
SPTFDs [14,16,38]. The presence of crossterms and noise often obscure the identification and.
selection of t-f autoterm regions. Averaging TFDs across different sensors and different polarizatic)ns
can suppress the effect of noise and crossterms and render it easier to identify the autoterm TFDs
[39,40]. The suppression of crossterms is highly dependent on the spatial correlations and polarization
diversity among the signals.

Figure 1 shows the PWVD of the signal received at the first vertical sensor. With the single sensor
and single polarization, the crossterms between the source signals and the noise obscure the correct
identification of the autoterm of each signal component. Figure 2 shows the PWVD averaged across
 the four vertical sensors. While the noise is substantially suppressed, the array averaging does not

significantly reduce the crossterms because of the close orientation of the sources. To further suppress
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-

the crossterms, we utilize both the spatial and polarization information. Figure 3 shows the PWVD
averaged over the four sensors and both polarizations. In this example, because source 1 and source 2

have orthogonal polarizations, their associated crossterms are completely suppressed.
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Figure 1. PWVD of the vertical component received at the first antenna sensor.
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Figure 2. PWVD of the vertical components averaged across four antenna sensors.
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Figure 3. PWVD averaged across four antennas and both polarizations.

5.2 PTF-ESPRIT

For both time-frequency ESPRIT (i-f ESPRIT) [18] and PTF-ESPRIT, the array averaged PWVD
is first used to identify the autoterm regions. The search-free PTF-ESPRIT provides a DOA
estimation which is compared to that of the conventional ESPRIT, polarimetric ESPRIT, and t-f
ESPRIT. in the underlying situation where the source signatures can be separated in the t-f domain,
only the t-f points on the signal signature of a single source are considered for STFD and SPTFD
matrix construction. The PTF—ESPRIT outperforms other ESPRIT-based methods by taking
advantages of such source discriminatory capability, in addition to the SNR enhancement and
polarimetric selection.

Figure 4 shows the root mean square error (RMSE) performance of the PTF-ESPRIT and other
ESPRIT-based methods versus the input SNR, where the least-squares approach is used for all
methods and the results are obtained from 100 independent trials. For conventional and t-f ESPRIT,
only the vertical polarization components of the source signals are used. For the t-f and PTF-ESPRIT
methods, only the first source signal is selected in STFD and SPTFD matrix construction,
respectively. The RMSE performance is evaluated for the first source signal. It is evident that the

PTF-ESPRIT outperforms all the other methods. It is clear that the polarimetric ESPRIT provides
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satisfactory DOA estimation only when the input SNR is moderate, and the conventional ESPRIT
fails to do so for all the input SNR values simulated. To the contrary, the PTF-ESPRIT provides 1-

degree RMSE when the input SNR is at a low level of about -7 dB.
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Figure 4. RMSE performance of ESPRIT algorithms versus input SNR.

In Figure 5, DOA estimates of 30 independent trials are shown for the different ESPRIT methods
utilizing the least-squares approach, where the input SNR is 5 dB. It is evident that, at this low input
SNR level, only the PTF-ESPRIT produces' acéurate and consistent estimates of the DOAs of all three
signals. While the t-f ESPRIT provides comparable DOA estimation for source signal 1, the variance

of the DOA estimations is much greater for the other two signals.
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Polarimetric ESPRIT
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Figure 5.- DOA estimation results from different ESPRIT methods.

6 Conclusion

30

The concept of SPTFD has been proposed and shown to be a powerful platform to utilize the

polarization and temporal signatures of signal arrivals for sophisticated array processing. To

demonstrate the advantage of the SPTFD platform, we have considered the DOA estimation problem

and proposed the polarixhetric time-frequency ESPRIT (PTF-ESPRIT) method as an example of its
applications. In such scenarios where the signals are highly localized in the time-frequency domain

and diversely polarized, the proposed PTF-ESPRIT significantly outperforms the other existing
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ESPRIT methods, including conventional ESPRIT, time-frequency ESPRIT, and polarimetric

ESPRIT.
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